

দুর্যোগ মানচিত্র

(দুর্যোগ ও জলবায়ু পরিবর্তনজনিত ঝুঁকি মানচিত্র ও পরিকল্পনা নির্দেশিকা)

অক্টোবর ২০১৪

কম্প্রিকেনিসভ ডিজাস্টার ম্যানেজমেন্ট প্রোগ্রাম (সিডিএমপি ২) দুর্যোগ ব্যবস্থাপনা ও ত্রাণ মন্ত্রণালয়

ATLAS

First Published in October 2014

Comprehensive Disaster Management Programme (CDMP II)
Department of Disaster Management Building (6th Floor)
92-93, Mohakhali C/A, Dhaka - 1212, Bangladesh
Telephone : +880-2-9890937, +880-2-9841581
E-mail: info@edmp.org.bd

Prepared by

C3ER, BRAC University

Website: www.cdmp.org.bd

Edited and Improved by

Sanjib Kumar Saha, Response and Adaptation Management Analyst, CDMP II Mirza Shawkat Ali, Climate Change Adaptation Specialist, CDMP II Göran Jonsson, Senior Programme Adviser, UNDP

Design

Md. Khairul Alam

Printing

Creative Printing and Packaging

Copyright © CDMP II 2014

Wider dissemination of the Atlas is encouraged and it may be reproduced with proper acknowledgement of the publisher.

দুর্যোগ মানচিত্র

প্রথম প্রকাশ

অক্টোবর ২০১৪

কম্প্রিকেনিসভ ডিজাস্টার ম্যানেজমেন্ট প্রোথ্রাম (সিডিএমপি ২)
দুর্মোগ ব্যবস্থাপনা ভবন
১২-৯০, মহাখালী বাণিজ্যিক এলাকা, ঢাকা–১২১২, বাংলাদেশ
টেলিফোন: +৮৮০-২-৯৮৪০৯৩৭, +৮৮০-২-৯৮৪১৫৮১
ইনেমইল: info@cdmp.org.bd
ওয়েব: www.cdmp.org.bd

elar.

সিথ্রিইআর, ব্র্যাক বিশ্ববিদ্যালয়

সম্পাদনা ও উন্নয়ন

সঞ্জীব কুমার সাহা, রেসপঙ্গ এন্ড এ্যাডাপটেশন ম্যানেজমেন্ট এনালিস্ট, সিডিএমপি মির্জা শঙকত আলী, ক্লাইমেট চেঞ্চ এ্যাডাপটেশন স্পেশালিস্ট, সিডিএমপি Göran Jonsson, Senior Programme Adviser, UNDP

ডিজাইন

মো: খাইরুল আলম

মূদ্রণ

ক্রিয়েটিভ প্রিন্টিং এন্ড প্যাকেজিং

কপিরাইট

প্রকাশনাটির বহুল ব্যবহার ও প্রচার কাম্য। তবে পৃণ:মুদ্রণের ক্ষেত্রে যথাযথভাবে প্রকাশকের নাম উল্লেখ ও স্বীকারোক্তি আশা করা হচ্চে।

বাণী

আমাদের প্রিয় মাতৃভূমি বাংলাদেশ একটি অপার সম্ভাবনার দেশ। আমাদের যেমন রয়েছে প্রাকৃতিক সম্পদ, ঠিক তেমনি আছে দক্ষ জনবল। সম্পদ আর সন্ভাবনার পাশাপাশি এদেশে আবার অনেক প্রাকৃতিক দুর্যোগ যেমন বন্যা, খরা, ঘূর্ণিঝড়, লবণাক্ততা ইত্যাদি বিদ্যমান। একারণে বিশ্ববাপী বাংলাদেশ একটি দুর্যোগ প্রবন্ধ দেশ হিসেবে পরিচিত। আমারা প্রতিনিয়তই কোন না কোন দুর্যোগের সম্প্রীন ইছি। আবার এ সাথে নতুন সমস্যা হিসেবে যোগ হয়েছে জলবায়ু পরিবর্তন। বিজ্ঞানীয়া ধারণা করছেন জলবায়ু পরিবর্তনের স্বংলা প্রত্যাধিক সম্প্রীন করছেন জলবায়ু পরিবর্তনের স্বংলা ভারতন কালে নালাদেশেন দুর্যোগের মন্যাটী ও এর ক্ষতির মাত্রা আরার বাততে পারে।

বর্তমান সরকার কার্যকারী দুর্যোগ ব্যবস্থাপনার মাধ্যমে মানবিক, অর্থনৈতিক ও পরিবেশগত ক্ষয়ক্ষতি হ্রাস করে মানুষের জীবনমান উন্নত করতে বৰুপরিকর। একাজ সুষ্ঠভাবে সম্পন্ন করার জন্য দুর্যোগ বাবস্থাপনা ও আগ মন্ত্রগালয়ের গক্ষ থেকে বিভিন্ন পদক্ষেপ এহণ করা হয়েছে। স্থানীয় পর্যায়ে দুর্যোগ খুকি হ্রাস কার্যক্রমকে আরও শক্তিশালী করার উদ্দেশ্যে সঠিক পরিকল্পনা প্রথমন করার ওপর ওক্ষত্ব আরোগ করা হয়েছে। খুকি হ্রাস পরিকল্পনা যুগোপযোগী ও তথ্যসমৃদ্ধ করার জন্য প্রয়োজন স্থানীয় পর্যায়ের জনপ্রতিনিধি ও কর্মকর্তাদের ব্যবহার উপযোগী নির্দেশিকা বা কলা-কৌশল।

Comprehensive Disaster Management Programme (CDMP II) দুর্যোগ ব্যবস্থাপনা ও আগ মন্ত্রণালয়ের একটি প্রকল্প মেটি দুর্যোগ ব্যবস্থাপনায় সরকারের সক্ষমতা বৃদ্ধির উদ্দেশ্য কাজ করছে। আমি জেনে খুবই আনন্দিত হয়েছি যে, স্থানীয় সরকার, বিভিন্ন বিভাগের কর্মকর্তা ও পরিকল্পনাবিদদের বাবহারের জন্য সিঙিএমপি উপজেলা দুর্যোগ মানচিত্র বা এ্যাটলাস তৈরী করেছে। এ্যাটলাসটিতে নির্দিষ্ট উপজেলার আপদের বিবরণ, আপদের মানচিত্র, অবকাঠানো ও প্রাভিষ্ঠানিক ঝুঁকির বিষয় অন্তর্ভাকির মাধ্যমে অত্যন্ত তথ্যবহুল করা হয়েছে। মানচিত্রটি সঠিকভাবে ব্যবহর করে পরিকল্পনা প্রথমন ও তা বাস্তবায়ন করলে স্থানীয় জনগোষ্ঠী দুর্যোগ মোকবিলা করতে অধিকতর সক্ষম হবে বলে আমি বিশ্বাস করি।

এই মহতী উদ্যোগের জন্য আমি দুর্যোগ ব্যবস্থাপনা ও ত্রাণ মন্ত্রণালয়, দুর্যোগ ব্যবস্থাপনা অধিদপ্তর এবং সিভিএমপি-এর সংখ্রিষ্ট কর্মকর্তাগণকে আন্তরিক ধন্যবাদ জানাই।

(E N 4 8 1 3 1 3 8 4 "

মোফাজ্জল হোসেন চৌধুরী মায়া, বীর বিক্রম, এম.পি.

মন্ত্র। দুর্যোগ ব্যবস্থাপনা ও ত্রাণ মন্ত্রণালয় বাণী

ভৌগোলিক অবস্থান, ছ-এাকৃতিক বৈশিষ্টা এবং জনসংখ্যার দানসভির কারণে বাংলাদেশ আকৃতিক দুর্মাগের ক্লেত্রে পৃথিবীর অন্যতম দুর্মোগ প্রবন দেশ হিসেবে পরিচিত। জলবায়ু পরিবর্তনের ধ্বংগাত্মক প্রভাব নিয়ে বিশ্ববাপী আলোচনার গুরু থেকেই বিশেষজ্ঞগণ বাংলাদেশকে জলবায়ু পরিবর্তনের ক্লেত্রে ক্লেত্রিছ দেশ হিসেবে বিবেচনা করে আগছেল। নালাদেশ প্রতিবিত্তকে কান না কোন প্রাকৃতিক কিংবা মানবসৃষ্ট দুর্মোগে আক্রান্ত হচ্চে। জলবায়ু পরিবর্তন ও তার প্রভাব দুর্মোগের বাগকতা ও এর মাত্রা আরও বাছিয়ে দিয়েছে, যার ফলবান্টতিতে বিশ্ব হচ্ছে লক্ষ লক্ষ মানুষের জীবন ও জীবিকা। বিজ্ঞানীরা ধারণা করছেন আগামী দিনগুলেতে এই পরিস্থিতি আরও বাগাবে হতে পারে।

এরকম একটা অনিন্দিত পরিস্থিতিতে ঝুঁকি হ্রাস পরিকল্পনা প্রণয়নে প্রয়োজন সর্বশেষ তথ্যসমৃদ্ধ ও সহজে ব্যবহার উপযোগী নির্দেশিকা বা কলা-কৌশল। উপজেলা দুর্যোগ মানচিত্র (Atlas) তৈরি করে Comprehensive Disaster Management Programme (CDMP II) সময়ের সেই দাবীটি পূরণ করেছে। স্থানীয় সরকার, বিভিন্ন বিভাগের কর্মকর্তা ও পরিকল্পনাবিদদের ব্যবহারের জন্য তৈরি করা উপজেলা দুর্যোগ মানচিত্র প্রকাশিত হচ্ছে জেনে আমি আনন্দিত হয়েছি।

বর্তমান সরকার দুর্যোগ ও জলবায়ু পরিবর্তনজনিত ঝুঁকি ব্যবস্থাপনা বিষয়টিকে সবিশেষ গুরুত্বের সাথে বিবেচনায় নিয়েছে। দুর্যোগ ব্যবস্থাপনা ও আগ সম্ভণালয় একেন্ত্রে প্রয়োজনীয় পদক্ষেপ গ্রহণ করেছে। আমি আশা করি স্থানীয় প্রশাসন, জনপ্রতিনিধি, পরিকল্পনাবিদ, বেসরকারি ব্যক্তি ও প্রভিষ্ঠান উপজেলা দুর্যোগ মানচিত্র বা এ্যাটলাস ব্যবহার করে স্থানীয় ঝুঁকি, হাস পরিকল্পনা প্রথম করেবেন। আমার বিশ্বাস সঠিক স্থানীয় পরিকল্পনা প্রহণ ও বাস্তব্যের, মাধ্যমে দুর্যোগ প্রবণ এলাকায় বসবাসরত জনগোষ্ঠী দুর্যোগ মোরবালিলায় আরও সক্ষম হয়ে উঠকেন।

স্থানীয় পরিকল্পনা প্রথয়ন করার ক্ষেত্রে সময়োপযোগী দুর্যোগ মানচিত্র (এ্যাটলাস) তৈরি ও তা বাবহারের জন্য বান্তবমুখী পদক্ষেপ প্রথণ করার জন্য Comprehensive Disaster Management Programme (CDMP II) এর সংশ্লিষ্ট সকলকে ধন্যবাদ জন্মাজি

মেছ্বাহ উল আলম

সচিব

দুর্যোগ ব্যবস্থাপনা ও ত্রাণ মন্ত্রণালয়

মুখবন্ধ

বাংলাদেশ পৃথিবীর বুকে একটি দুর্যোগ প্রবণ দেশ হিসেবে পরিচিত। প্রাকৃতিক ও মানবসূত্র আপদের ফলফ্রন্ডিতে বাংলাদেশ প্রতিনারতই কোন না কোন প্রাকৃতিক দুর্যোগের সম্মুখীন হচ্চে যেমন, বন্যা, ধরা, ঘূর্ণিবড়, জলোছাস, নবণাজভা, নদী ভাঙ্গন কুমিধাস ইত্যাদি। প্রছাড়াও, ভৌগোলিক অবস্থান ও জনসংখার আধিকাসহ বিসামান অন্যান্য বিপদাপন্নভাব কারাবে যে কোন দুর্যোগে এদেশে জীবনহানি ও অর্থনৈতিক ক্ষতি সাধিত হয় অনেক বেশী। আর্থনৈতিক ক্ষতির মধ্যে অবকাঠাযো, ফসল, ঘর-বাড়ি ইত্যাদি ধ্বংস এবং গৃহপালিত পত্তর ক্ষতিসাধন অন্যতম। এতে জীবন-জীবিকার প্রত্যক্ষ ক্ষতি হয় এবং পরোক্ষভাবে আয়ের সুযোগ কমে গিয়ে দারিন্তার প্রকোপ বেড়ে যায়। বিজ্ঞানীদের ধারণা জলবায়ু পরিবর্তনজনিত কারণে আগামী দিনতলোতে বিভিন্ন ক্ষেত্রে ক্ষতির মাত্রা আরও বন্ধি পেতে পারে।

জলবায়ুর বর্তমান অবস্থা ও পরিবর্তনে জবিষাত চিত্র সামনে রেখে কোন উন্নয়ন পরিকলপনা প্রথমন করা খুবই দুরুহ কাজ।
এরকম অবস্থায় টেকসই উন্নয়ন পরিকল্পনা করতে হলে প্রয়োজন বিজ্ঞানভিত্তিক সর্বাশেষ তথা এবং উপান্ত। Comprehensive
Disaster Management Programme (CDMP II) ইতোমধ্যে জলবায়ু পরিবর্তনের বর্তমান ও জবিষ্ণাত চিত্র, এর সালাফল,
প্রভাব ইত্যাদির ওপর বেশ কয়েকটি গুলত্বপূর্ণ গ্রেষণা কাজ শেষ করেছে। এছাড়াও তৈরি করা হয়েছে উপজেলা ও ইউনিয়ন
পর্যায়ের বন্যা, জলোছায়ুগ ও লবণাভতার মানচিত্র। গ্রেষণায় প্রাপ্ত ফলাফল ও তথা-উণান্ত বিভিন্নভাবে বিশ্লেষণ করে স্থানীয়
পরিকল্পনা প্রথামনে কাজে প্রবাহারে জ্ঞান তির করা হজে বেশ কিছু উপকরণ ও নির্দেশিকা। এবই ধারবাহিকতায় স্থানীয়
সরকার, বিভিন্ন বিভাগের মাঠপর্যায়ের কর্মকর্তা ও পরিকল্পনাবিদনের বাবহার উপযোগী করে তৈরি করা হয়েছে উপজেলা দুর্যোগ
মানচিত্র (Atlas)। এটাটাগাসটি থেকে সর্যন্থিষ্ট উপজেলার আগদের বিবরণ, বিপদাপনুতা, কুঁকি এবং সামাজিক-অর্থনৈতিক অবস্থা

আমি সকলকে বিশেষত স্থানীয় পর্যারের জনগ্রতিনিধি, কর্মকর্তা, পেশাজীবি ও গবেষকবৃদ্দকে স্থানীয় পরিকল্পনা প্রণয়নের সময় দূর্যোগ মানচিত্রটি বাবহার করার জন্য উপোইতে করাছি। আমার বিধাস মানচিত্রটি এবং সন্মিবেশিত তথ্য বাবহার করা হলে স্থানীয় পরিকল্পনা দুর্যোগ ও জলবায় পরিবর্তন সহলশীল উপাদানে সমন্ধ হবে এবং দুর্যোগ বাঁকিছাল সার্বাচিত্র সেবান হবে।

আমি দুর্বোগ মানচিত্র (এ্যাটলাস) তৈরিতে যারা সংশ্লিষ্ট ছিলেন তাদের সকলকে জানাই আন্তরিক ধন্যবাদ। মানচিত্রটির উন্নয়নে যে কোন পরামর্শ সাদরে গ্রহণ করা হবে।

মোহামাদ আবদল কাইমম

মোহাম্মদ আবদুল কাইয়ুম জাতীয় প্রকল্প পরিচালক (অতিরিক্ত সচিব) কম্প্রিকেনসিভ ডিজাস্টার মানেজমেন্ট প্রোগ্রাম

A STATE OF THE STA

কতজ্ঞতা স্বীকার

জলবায়ুর বর্তমান অবস্থা ও পরিবর্তনের ভবিষ্যত চিত্র সামনে রেখে স্থানীয় পরিকল্পনা প্রণয়নে জনপ্রতিনিধি, কর্মকর্তা, পেশাজীবি ও গবেষকবৃন্দকে সহযোগিতার জন্য বাংলাদেশে এই প্রথম তৈরি করা হলো উপজেলা দুর্যোগ মানচিত্র বা এটিলাস। এটাটালাসিটিতে রয়েছে নির্দিষ্ট উপজেলার বিভিন্ন আপদের বিবরণ, আপদের মানচিত্র, অবকাঠামো ও প্রাভিষ্ঠানিক ঝুঁকির বিষয়ে বিজ্ঞারিত বর্ণনা। আশা করা হচ্ছে স্থানীয় ঝুঁকি হ্রাস পরিকল্পনা প্রণয়ন ও তা বাস্তবায়নের ক্ষেত্রে এটাটালাসটি অত্যন্ত সহায়ক ভূমিকা পালন করবে।

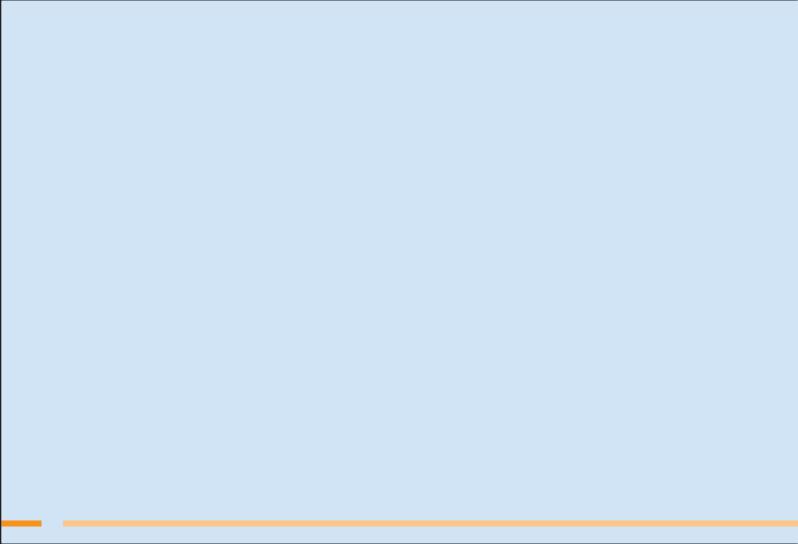
দূর্যোগ মানতিত্র বা এয়াটলাস তৈরিতে রয়েছে অনেকের সবরকম অবদান। সর্বন্ধিষ্ট সকলকে সর্বপ্রথমেই তাঁদের অবদানের জন্য কৃতজ্ঞতা ও ধন্যবাদ জানাজিছ। এই সংক্ষিপ্ত পরিসরে সকলেবে নাম ও তাঁদের বিভিন্ন রকম অবদানের স্বীকৃতির বর্ণনা দেয়া বাজুবিক পক্ষেষ্ট সম্ভব নয়। এজবানে প্রথমেই সকলেবে কাছে বিনীতভাবে ক্ষমা চেয়ে নিজ

যাঁর কথা সর্বপ্রথমেই বলতে হয় তিনি সিভিএমপির জাতীয় প্রকল্প পরিচালক জনাব মোহাম্মদ আবদুল কাইয়ুম। আমরা যখন সিভিএমপি কর্তৃক বান্তবায়িত জলবায়ু পরিবর্তবের ওপর বিভিন্ন গবেষণা ও কৈঞ্জানিক সমীক্ষার তথ্য-উপান্ত, ফলাফল ও সুপারিশপমূহ বিশ্লেষণ করে নানারকম উপকরণ ও নির্দেশিকা তৈরির কাজে হাত দিয়েছি তখন জাতীয় প্রকল্প পরিচালক মহোদয় আমাদেরকে এক অভিনব ধারণা দিলেন। একটি আন্তর্জাতিক সম্মেলনে অংশগ্রহণ করে সেখান থেকে প্রাপ্ত জ্ঞান থেকে তিনি এন্যালাস তৈরির ধারণাটি আমাদের সামনে তলে ধরলেন।

সিডিএমপি থেকে প্রাপ্ত ধারণা, তথা-উপান্ত ও বিভিন্ন মানচিত্র ব্যবহার করে দুর্যোগ মানচিত্র বা এ্যাটলাসটি তৈরি করেছে ব্রাক বিশ্ববিদ্যালয়ের সেন্টার ফর ক্লাইমেট চেঞ্চ এক এনভাররোমেন্টাল বিসার্চ (C3ER) এর একদল উদ্যোমী ও তরূপ শিক্ষক ও বিজ্ঞানী। তাদের অদম্য উৎসাহ ও নিরলস প্রচেষ্টার ফলে অবশেষে আমরা ১০টি নির্বাচিত উপজেলার জন্য ১০টি এ্যাটলাস তৈরির কাজ সম্পন্ন করতে পেরেছি।

দেশের দুইটি বিভাগে দুইটি বিভাগীয় কর্মশালা আয়োজন করে বিভাগের সংখ্লিষ্ট সব সংস্থা ও সব পর্যায়ের কর্মকর্তার মতামত ও পরামর্শ বিবেচনায় নায়া হয়েছে। এাটলাসটি পর্যান্দোচনাত করে দুর্যোগ বাবস্থাপনা অধিদন্তরের কর্মকর্তাগণ সুচিন্তিত মতামত দিয়েছেন। এছাড়া এটালাসটি তৈরের বিজ্ঞ পর্যায়ে পিচনাত বিশেষজ্ঞাণ এটিতে ব্যবহৃত বিভিন্ন তথ্য, উপান্ত এবং এটির আর্কিক বিনাসের ওপর নানারকম পরামর্শ ও মতামত দিয়েছেন। সবশেষে একটি জাতীয় কর্মশালার মাধ্যমে এ্যাটলাসটির চূড়ান্ত বসভার ওবিবারে বিশেষজ্ঞান ওপর এবিবারে বিশেষজ্ঞানে পরামর্শ নিয়ে তা চূড়ান্ত করা হয়েছে।

পরিশেষে যাদের অর্থায়নে এই এ্যাটলাসটি তৈরি করা হয়েছে সেই উন্নয়ন সহযোগী সংস্থা বিশেষত জাতিসংঘ উন্নয়ন কর্মসূচী (UNDP) কে তাদের অবদানের জন্য ধন্যবাদ জানাচিছ।


সঞ্জীব কুমার সাহা

রেসপন্স এভ এ্যাডাপটেশন ম্যানেজমেন্ট এ্যানালিস্ট, সিডিএমপি

-মির্জা শওকত আলী

ক্লাইমেট চেঞ্জ এ্যাডাপটেশন স্পেশালিস্ট, সিডিএমপি

Contents		সৃচিপত্র	
Contents		///	
Message	iii	বাণী	iii
Message	iii	বাণী	iii
Foreword	iv	মুখবন্ধ	iv
Acknowledgment	iv	কৃতজ্ঞতা স্বীকার	iv
Summary	01	সারসংক্ষেপ	٥٥
General Introduction	03	ভূমিকা	૦૭
1.1 About the Atlas	03	১.১ এ্যাটলাস সম্পর্কে	૦૭
1.2 Disaster risk management: Importance and current practices	04	১.২ দুর্যোগ ঝুঁকি ব্যবস্থাপনা: গুরুত্ব ও বর্তমান কার্যক্রম	08
1.3 Objective of the atlas	06	১.৩ এ্যাটলাসের উদ্দে শ্য	০৬
1.4 Methodology	06	১.৪ কাৰ্যপদ্ধতি	০৬
2 Baseline Data	08	২ ভিত্তি উপাত্ত	оъ
2.1 Physiography of the Upazila	09	২.১ উপজেলার ভূ-প্রকৃতি	০৯
2.2 Socio Economic Condition	10	২.২ আর্থ-সামাজিক অবস্থা	\$0
3 Exposure Analysis	13	৩ আক্রান্ততা বিশ্লেষণ	20
4 Vulnerability Analysis	19	৪ বিপদাপন্নতা বিশ্লেষণ	72
5 Risk Assesment of Madaripur Sadar	36	 মাদারীপুর সদর এর ঝুঁকি মুল্যায়ন 	৩৬
6 Conclusion	38	৬ উপসংহার	లికా
Appendix-1: Risk Assessment Methodology	39	পরিশিষ্ট-১: ঝুঁকি ম্ল্যায়ন পদ্ধতি	৩৯

Summary

Bangladesh is one of the most climate vulnerable countries in the world and the vulnerability dimension is more likely to aggravate far more in future. Floods, tropical cyclones, storm surges, tidal surge, saline intrusion, droughts, etc. are likely to become more frequent and severe in the coming years. Comprehensive Disaster Management Programme (CDMP II) has completed a number of studies on climate change parameters, vulnerabilities and developed local level hazard exposure information in the form of flood inundation, storm surge inundation and salinity maps. The study findings, maps and other information are translated into local level Risk Atlas, which can be used for local level risk reduction planning. The Risk Atlas can serve as ready reference with updated information of hazard and exposure, profile on vulnerabilities, as well as elements at risks and capacity at local level. The Atlas contains the following information of the Upazila.

Physiography

In the context of physiography, Bangladesh may be classified into three distinct regions: (A) Floodplains, (B) Terraces, and (C) Hills; each having distinguishing characteristics of its own. Pleistocene upland extends from the Lalmai Hills of Comilla Dristrict and adjacent low hills in the east through Dhaka and Rajshahi divisions to West Bengal in India. The Eastern and Northern Frontier Hilly regions represent the hill areas of Bangladesh and comprise two main sub-regions - Chittagong Hill Tracts and Foot Hills of the Shillong Massif. Madaripur Sadar upazila of Madaripur district is located within the Meghna Estuarine islands and Chars.

Climate

Temperature, rainfall, wind speed, humidity, sunshine hours and evapotranspiration are considered as the most important element of climate. Considering the importance, the above mentioned factors are analyzed to know the real climatic condition of Madaripur Sadar Upazila. Climate change refers to the trends arising from the variability of different meteorological parameters. Sometimes the terms "Climate Change" and "Climate Variability" are used synonymously, though these two are of different phenomena. Climatic change and trend have been analyzed for Madaripur Sadar Upazila in this Atlas.

Land Cover

Land cover means the physical cover of the land in a certain area. Natural vegetation, manmade structures, etc. represent the land cover. The land cover includes the information regarding bare soils and water bodies of a particular area. The Land cover or the use of land influences both the occurrence of the hazard and exposure of the elements.

Housing

Housing and building materials are other vulnerable elements to disaster. In Bangladesh, buildings are classified in three major categories - Pucca (permanent), Semi-pucca (semi-permanent) and Kutcha & Jhupri (temporary) based on building materials. These three types of houses have been analyzed to assess the exposure and vulnerability.

Household Size and Population

The number of people living in each house determines the household size. Household size is also analyzed in this Atlas as it is an important factor to understand the population of target area.

Socio-Economic Condition

Economic activity, the unemployment rate, electric coverage, water supply and sanitation of Madaripur Sadar Upazila are analyzed in this study. Water supply and sanitation are important to determine the living condition of the area. These factors are also determinants of vulnerability and risk assessment.

সারসংক্ষেপ

জলবায়ু পরিবর্তনের প্রভাবে পৃথিবীর বিপদাপন্ন অনেক দেশের মধ্যে বাংলাদেশ অন্যতম এবং ধারণা করা হয় যে, বিপদাপন্নতার মাত্রা ভবিষতে আরও বৃদ্ধি পেতে পারে। আগামী দিনতলোতে বনা, মৌসুমী ঘূর্ণিঝড়, জলোছ্মাস, লবণাজতা, ধরা ইত্যাদির মাত্রা ও পরিধি আরও বাড়তে পারে। কলিপ্রকোসিভ ডিজাস্টার ম্যানেজমেন্ট প্রোথমা (সিভিএমপি ২) এর পক্ষ থেকে জলবায়ু পরিবর্তনের বিভিন্ন নিয়ামক, এর প্রভাব, বিপাদপন্যতা এবং বন্যা, জালোছ্মাস, লবণাজতায় আক্রান্ত হওয়ার মানচিত্রসহ বেশ করেকটি গবেষণা কাল শেষ করা হয়েছে। গবেষণা থেকে প্রাপ্ত ছলাফল, মানচিত্র এবং অন্যান্য তথ্য সম্বিবেশিত করে তৈরি করা হয়েছে দুর্যোপ মানচিত্র (এ্যাটলাস) যা স্থানীয় পর্যারের ঝুঁকি হ্রাস পরিকল্পনা প্রণয়নে বাবহার করা যাবে। তাৎক্ষনিক অধ্যাস্থ্য তথ্য এবং উপাত্ত, বিভিন্ন স্থাকে। বাবহার করা বাবে কারণ এতে রয়েছে আপদ ও আক্রান্ততা, বিপদাপন্নতার বিবরণ, বিজ্ঞানভিত্তিক সর্বশেষ তথ্য এবং উপাত্ত, বিভিন্ন স্থাপনা ও প্রতিষ্ঠানের ঝুঁকি এবং স্থানীয় সক্ষমতা। এই উপজেরার নিম্নালিখিত বিভিন্ন তথ্য এাটালাসাটির বিভিন্ন করা হায়েছে।

ভ্-প্রকতি

ভূ-প্রকৃতিগত দিক থেকে বাংলাদেশকে তিনটি ভাগে ভাগ করা যায়ঃ (ক) প্রাবন ভূমি (খ) বরেন্দ্র ও ভাওয়াল অঞ্চল (গ) পার্বতা অঞ্চল। আবার প্রত্যোকটির নিজস্ব কিছু সাতন্ত্র বৈশিষ্ট্য রয়েছে। কুমিল্লা জেলার লালমাই পাহাড় থেকে তক্ষ করে ঢাকা ও রাজশাহী হয়ে ভারতের পশ্চিমকদ পর্যন্ত প্রিসটোদেন উচ্চ ভূমি অবস্থিত। পূর্ব ও উত্তর অংশটি পাহাড়ি অঞ্চল নিয়ে গঠিত যা দুটি প্রধান ভাগে বিভক্ত- পার্বত্য চট্ট্রথাম এবং শিলং পর্বতের পাদদেশিয় তুমি । মানচিঞ্জটিতে মাদারীপর সদর উপজেলার জব্দবায় পরিবর্তন ও ধারা বিশ্লেষণ করা যয়েছে।

জলবায়

ভাপমাত্রা, বৃষ্টিপাত, বাতাদের গতি, আর্দ্রতা, সূর্যালোক ঘন্টা এবং বাম্পীভবনকে জলবায়ুর সবচেয়ে গুরুত্বপূর্ণ উপাদান হিসেবে গণ্য করা হয়। উল্লিখিত উপাদানগুলোর ওক্ষত্ব বিবেচনা করে মাদারীপুর সদর উপজেলার প্রকৃত জলবায়ু প্রকৃতি বিশ্লেষণের জন্য বেছে নেওয়া হয়েছে। আবহাওয়ার বিভিন্ন উপাদান পরিবর্তনের উপরে জলবায়ুর পরিবর্তন নির্ভরশীল। কখনো কখনো আবহাওয়া পরিবর্তন' এবং 'আবহাওয়া বৈচিত্র্য' প্রতায় দু'টি একই অর্থে ব্যবহৃত হয় যদিও তা একই অর্থ বহন করে না। মানচিত্রটিতে মাদারীপুর সদর উপজেলার জলবায়ু পরিবর্তন ও ধারা বিশ্লেষণ করা হয়েছে।

ভূমি আচ্ছাদন

ভূমি আচ্ছাদন বলতে সাধারণত কোন অঞ্চলের ভূমির উপরিভাগের বিভিন্ন বস্তুর উপস্থিতি বুঝায়। প্রাকৃতিক বন-জঙ্গল, মানব সৃষ্ট কাঠামো প্রভৃতি ভূমি আচ্ছাদনকে চিত্রিত করে। কোন নির্দিষ্ট অঞ্চলের উন্মুক্ত ভূমি ও জলাধার সেই অঞ্চলের ভূমি আচ্ছাদনের অন্তর্ভূক। ভূমি আচ্ছাদনের ধরন এবং ভূমি ব্যবহারের প্রকৃতি দুটোই আপদ ঘটানো এবং আপদে আক্রান্ত করার ক্ষেত্রে ভূমিকা রাখে।

গহায়ন

গৃহের ধরন এবং নির্মাণের উপাদান আরও একটি দুর্যোগ বিপদাপনুতার উপাদান। নির্মাণের উপকরণের উপর ভিত্তি করে বাংলাদেশের গৃহগুলোকে প্রধানত তিন ভাগে করা যায়- পাকা, আধা কাঁচা এবং কাঁচা ও বুপরি। দুর্যোগ আক্রান্ত এবং বিপদাপনুতা বিশ্লেষণে এই তিন ধরনের বাসস্থান বিশ্লেষণ করা হয়েছে।

খানার আকার ও জনসংখ্যা

কতজন লোক একটি বাড়িতে বসবাস করছে তার ওপর ভিত্তি করে খানার আকার নির্ধারিত হয়। যেহেতু খানার আকার একটি গুরুত্বপূর্ণ নিয়ামক তাই জনগোষ্ঠীর বিপদাপন্নতা বুঝার জন্য খানার আকারও এই দুর্যোগ মানচিত্র তৈরিতে বিশ্লেষণ করা হরেছে।

আর্থ-সামাজিক অবস্থা

মাদারীপুর সদর উপজেলার অর্থনৈতিক কর্মকাভ, বেকারতের হার, বিদ্যুৎ সংযোগের বাাঙি, পানি সরবরাহ এবং পয়নিছাশন ব্যবস্থা এই গ্রেষণায় বিশ্লেষণ করা হয়েছে। পানি সরবরাহ এবং পয়র্রনিছালন ব্যবস্থা কোন অঞ্চলের জীবনখায়ার অবস্থা নির্ধারণের জন্য একটি গুরুত্বপূর্ণ মাপকাঠি। একই সাথে এই উপাদানভলো বিপদাপত্মতা এবং খুঁকি পরিমাপের জন্যও বিশেষভাবে গুরুত্বপূর্ণ।

Exposure Analysis

It is essential to consider the spatial variations of hazards and exposures in order to analyze the risks. Sensitivity of the elements to a particular hazard varies due to their inherent properties, degrees of hazard intensity and degrees of exposure level.

Vulnerability Analysis

Physical Vulnerability, social vulnerability, economic vulnerability and environmental vulnerability are analyzed to obtain the comprehensive assessment of vulnerability for Madaripur Sadar Upazila. The relative importance of different indicators is decided by assigning individual weights to them. For determining weights of different indicators, Delphin method is applied.

Risk Assessment

Flood, storm surge, salinity and drought are analyzed for risk assessment in this Atlas. Risk is calculated in two ways. Firstly, risk is calculated for different types of hazard and secondly, it is calculated for four vulnerability sectors. Physical, social, economic and environmental sectors are considered for calculating risk. Finally, an integrated risk is calculated for this upazila. After analyzing all these factors, risks, are ranked for Madaripur Sadar Upazila to exhibit in the Atlas.

দুর্যোগাক্রান্ততা বিশ্রেষণ

ঝুঁকি বিশ্লেষণের জন্য স্থানভেদে আপদের প্রকৃতি ও মাত্রা বিশ্লেষণ করা আবশ্যক। যে কোন উপাদানের বিশেষ কোন আপদের প্রতি সংবেদনশীলতা সেই উপাদানের প্রকৃতিগত বৈশিষ্ট্য, আপদের তীব্রতা এবং দুর্যোগাক্রান্ততার মাত্রার উপর নির্ভর করে।

বিপদাপন্নতা বিশ্লেষণ

মাদারীপুর সদর উপজেলার সামগ্রিক বিপদাপন্নতা পরিমাপ করার জন্য কাঠামোগত, সামাজিক, অর্থনৈতিক এবং পরিবেশগত বিপদাপন্নতা বিশ্লেষণ করা হয়েছে। তিনু তিনু সূচকের গুরুত্ব বোঝার জন্য তিনু তিনু মান দিয়ে বিশ্লেষণ করা হয়েছে। বিপদাপন্নতা বিশ্লেষণের জন্য বিভিন্ন সূচকে মাত্রা ব্যবহার করে তাদের তুলনামূলক গুরুত্ব নির্ধারণ করা হয়েছে। সূচকের মাত্রা নির্ধারণ করার জন্য ভেলফি পদ্ধতি ব্যবহার করা হয়েছে।

ঝুঁকি পরিমাপ

এই মানচিত্রটিতে বুঁকি পরিমাপের জন্য বন্যা, জলোচছাস, লবণাক্ততা এবং খরার ঝুঁকি বিশ্লেষণ করা হয়েছে। দুভাবে ঝুঁকির পরিমাপ করা হয়েছে। প্রথমত, ডিন্নু চিন্নু দুর্বোগের জন্য ডিন্নু ডিন্নু ঝুঁকির পরিমাপ এবং দ্বিডীয়ত, চারটি ডিন ক্ষেত্রের ওপর ডিব্রি করে যথার ভৌত, সামাজিক, অর্থনৈতিক এবং পরিবেশগত। সবশেষে প্রতিটি উপজেলার সমস্বিত ঝুঁকি পরিমাপ করার জন্য উপরের সবকটি উপাদান বিশ্লেষণ করে মাদারীপুর সদর উপজেলার ঝুঁকির পর্যায়ত্রম তৈরি করা হয়েছে।

1 General Introduction

1.1 About the Atlas

Bangladesh is one of the most disaster vulnerable countries and will become even more so as a result of climate change. Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4, 2007) indicates the evidence of changes in global climate over the past century. Floods, tropical cyclones, storm surges, saline intrusion, droughts, etc. are likely to become more frequent and severe in the coming years. Based on research and study findings, Comprehensive Disaster. Management Programme (CDMP, II) has developed local level hazard exposure information in the form of flood inundation, storm surge inundation and salinity maps. The maps and data are instrumental for community risk assessment, flood zoning and to find elements at risk, at present and in the changing climate. The maps and other information have been translated into Upazila Risk Atlas, which can be used for local level planning.

The Risk Atlas is basically a compendium of hazard maps, brief description of risks indices, institutions and infrastructures at risk at the upazila level. It contains general information about natural disasters, community, properties of communities and its level of exposure to a particular hazard. Atlas also includes information on different types of vulnerability like physical vulnerability, coxical vulnerability, environmental vulnerability and economic vulnerability and their sensitivity to different hazards. The Atlas provides reference to analyse the risk profile of selected upazila, in the form of hazard status (flood depth and extent, stevel for salinity concentration and inundation extent, drought profile and extent), as well as vulnerability profile. Aim of the Risk Atlas is to facilitate the local government authority with easy, accessible and credible information and references for local level risk reduction and adaptation planning.

With the support of Comprehensive Disaster Management Programme (CDMP II) Center for Climate Change and Environmental Research (C3ER), BRAC University has prepared the Risk Atlas. A team of engineers, mapping experts, social scientists worked together who collected, analysed and used updated data and information on hazards, vulnerability and risks both from the national and local sources. In order to give a comprehensive structure of the Atlas the team shared and facilitated the draft Atlas with the planners and policy makers at local and national levels.

১ ভূমিকা

১.১ এ্যাটলাস সম্পর্কে

বাংলাদেশ একটি অন্যতম দুর্যোগপ্রবণ ও বিপদাপন্ন দেশ হিসেবে পরিচিত এবং জলবায়ু পরিবর্তনের ফলে এই অবস্থা আরও নাজুক হতে পারে। গত এক শতকে বৈধিক জলবায়ুর পরিবর্তন হয়েছে তা ইন্টারগভার্নটোল প্যানেল অন ক্রাইমেট চেঞ্চ (আইপিসিস) এর চতুর্থ নাজুক সমীকা প্রতিবেদন থেকে নিশ্চিত হওয়া যায় (এআর৪, ২০০৭)। ধারণা করা হয় যে, আগামী বছরওলোতে বন্যা, ঘৃণিঝড়, জলোছাস, লবণাক্ততা, বরা ইত্যাদি আরও বেশী হবে ও খারাণ রূপ নিয়ে দেখা দিবে। বিভিন্ন গবেষণা ও সমীক্ষা থেকে প্রাপ্ত তথ্য ও উপাত বিশ্লেষণ করে কম্প্রিবেদাল উজাস্টার ম্যানেজমেন্ট প্রোগ্রাম (সিভিএমপি ২) স্থাণীয় পর্যায়ে ব্যবহার করার জন্য টেরি করেছে বন্যা, জলোছাস ও লবণাক্তার মান্টির। এই মান্টির ও উপাতসমূহ জনগোষ্ঠীর কুরিক লেখ, বন্যাপ্রবণ এলাকা নির্দিষ্ঠনরণ, বর্তমান ও পরিবর্তিত জলবায়ুর কুরিকটে থাকা উপাদানসমূহ চিহ্নিত করার কারে ব্যবহার করার ক্ষেত্রে অন্তর্ত উপথেগী। উপরোদ্ধিতি মান্টির ও উপাতসমূহ করা পরিবর্তিত ও পরিবর্তিত পরিবর্তিত করা হয়েছে দুর্যোগ মান্টির বা রিক্ষ এটাটাস।

দুর্যোগ মানচিত্র যা রিন্ধ এটাটলাস হচ্ছে মূলত যে কোন উপজেলার আপদ মানচিত্র, ঝুঁকি সূচকের সংক্ষিপ্ত বিবরণ, ঝুঁকিতে থাকা বিভিন্ন প্রতিষ্ঠান, অবকাঠামো ইত্যাদির এক করে গাঁথা একটা বই। বিশ্ব এটিলালে আছে কোন এলাকার প্রাকৃতিক দুর্যোগ, ঐ এলাকার লানগোঠী, তাদের বৈশিষ্টা, কোন আপদে তাদের আক্রান্ত হওয়ার অবস্থার বিবরণ। রিন্ধ এটাটলাসটিতে আরও আছে বিভিন্নরকম বিপালপান্তা যেমন কাঠামোগত বিপালপান্তা নামাজিক বিপালপান্তা, পরিবেশগত বিপালপান্তা ও অর্থনিতিক বিপালপান্তা এবং বিভিন্ন আপদে তাদের সংবেদনশীলতা। রিন্ধ এটাটলাসটি কোন নির্দিষ্ট উজেলার ঝুঁকির চিত্র (প্রোক্ষাইল) বিশ্লেষণ্যের ক্ষেত্র প্রয়োজনীয় সূত্র দিয়ে সাহায্য করে যেগুলো হচ্ছে আপদের অবস্থা (বন্যার গভীরতা ও পরিধি, ক্ষরার চিত্র ও পরিধি) এবং বিপালপানতার চিত্র (প্রোক্ষাইল)। সহজ্ঞাবাপ হত্তর্ভাবিপ ও গ্রহণোগ্য তথ্য এবং সূত্র দিয়ে স্থানীয় সরকারি প্রশাসনকে অত্র এলাকার ঝুঁকি, ব্রাস ও অভিযোজন পরিকল্পান প্রস্থানে সহযোগিতা করাই হচ্ছে রিন্ধ এটাটলাসটির লক্ষ্য।

কম্প্রিনেশিত ডিজাস্টার ম্যানেজমেন্ট প্রোথাম (সিডিএমণি ২) এর সার্বিক সহায়তায় ব্র্যাক বিশ্ববিদ্যালয়ের সেন্টার ফর ক্লাইমেট চেঞ্চ এড এনভায়রোমেন্টাল রিসার্ট (সিপ্তিইআর) রিক এয়াটলাসটি তৈরি করার কাজ করেছে। প্রকৌপদী, মানচিত্র বিশারদ ও সমাজ বিজ্ঞানীর একটা দল একাজটি করেছে যারা ছানীয় ও জাতীয় পর্যায় থেকে আপদ, বিপদাপদুতা ও ঝুঁকির সমসাময়িক তথা ও উপাত্ত সংগ্রহ করে বিশ্লেষণ করে রিক্ত এয়াটলাস তৈরিতে বাবহার করেছে। রিক্ত এয়াটলাসটিতে একটি সম্পিত রূপ দেওয়ার জন্য এটি স্থানীয় ও জাতীয় উল্লয় পর্যায়ের নীতি-নির্ধারক ও পরিকল্পনা প্রথয়নকারীদের সামনে উপস্থাপন করা করে, তাদেরকে জানানো এবং তাদের মতামত নেওয়া হয়েছে।

1.2 Disaster risk management: Importance and current practices

Bangladesh is one of the most vulnerable countries in the world.

According to Climate Risk Index, Bangladesh is one of the most disaster-prone countries in the world (Harmeling, 2009). Almost every year, the country experiences disasters of one kind or another like tropical floods, cyclones, storm surges, coastal erosion, tornadoes and droughts (Ali, 1996). These disasters result in heavy loss of life and property and jeopardize development

activities. Bangladesh is highly vulnerable to different types of disasters because of high population density, high incidence of poverty and social inequity, poor institutional capacity, inadequate financial resources, and poor infrastructure (Ahmed 2004). Moreover, the frequency and magnitude of different hazards are going to be amplified due to climate change, Floods, tropical cyclones, storm surges and droughts are likely to become more frequent and severe in the coming years. These changes will threaten the significant achievements of Bangladesh that has made over the last 20 years in increasing incomes and reducing poverty, and will make it more difficult to achieve the MDGs (BCCSAP, 2009). In the past, the disaster management program of Bangladesh was mainly focused on relief and rehabilitation. But this scenario has changed from the 1990s, and the Bangladesh Government is approaching towards a paradigm shift from the conventional disaster relief and rehabilitation programs to a more comprehensive risk reduction or Disaster risk reduction (DRR) culture. In order to plan for a risk resilient society, the first step should be to compile the risk information, particularly at the local level.

Disaster risk reduction is a global priority

The decade covering 1990 to 2000 was declared by the UN to be the International Decade for Natural Disaster Reduction (IDNDR). After the year 2000, a follow up process was initiated that is titled as the International Strategy for Disaster Reduction (ISDR). This strategy stressed

International Strategy for Disaster Reduction (ISDR). This strategy stressed the need to move from top-down management of disasters and a cycle that focuses on rehabilitation and preparedness, towards a more comprehensive approach that works to avoid or mitigate risk before disasters occur.

The disaster risk management cycle, shown in Figure 1.2.1, consists of four phases: Prevention/Mitigation and Preparedness in the pre-disaster stage, and Reposnes and Rehabilitation/Reconstruction in the post-disaster stage. In the "Prevention/Mitigation" phase, efforts are made to prevent or mitigate damage (e.g. construction of dikes and dams against floods). Activities and measures for ensuring an effective response to the impact of hazards are classified as "Preparedness" (e.g. emergency drills and public awareness) and are not aimed at averting the occurrence of a disaster. "Response" includes such activities as rescue efforts, first aid, fire fighting and evacuation. In the "Rehabilitation/Reconstruction" phase, considerations of disaster risk reduction should form the foundations for all activities. Taking appropriate measures based on the idea of disaster risk management in each phase of the disaster risk management cycle can reduce the overall disaster risk.

১.২ দুর্যোগ ঝুঁকি ব্যবস্থাপনা : গুরুত্ব ও বর্তমান কার্যক্রম

বাংলাদেশ বিশ্বের সবচেয়ে বিপদাপনু দেশগুলির মধ্যে একটি

জলবায়ু ঝুঁকি সূচক অনুযায়ী, বাংলাদেশ পৃথিবীর সবচেয়ে দুর্যোগ প্রবণ দেশগুলোর মধ্যে একটি (Harmeling, 2009)। প্রায় প্রতি বছরই দেশটি কোন না কোন প্রাকৃতিক দুর্যোগ যেমনঃ বন্যা, ঘূর্ণিঝড়, জলোচ্ছাস, নদী ভাঙ্গন, টর্নেডো এবং খরা দ্বারা আক্রান্ত হয় যা সম্পদের ক্ষতি সাধন করে

এবং প্রাণহানি ঘটায় ও উন্নয়ন কর্মকাতে বিমু ঘটায় (Ali,1996)। জনসংখ্যার অধিক ঘনত্ব, দারিদ্রোর উচ্চ হার ও সামাজিক অসমতা, সীমিত প্রাতিষ্ঠানিক সামার্থা, অপ্রত্নুল অর্থনৈতিক সম্পদ ও দুর্বল অবকাঠামো বাংলাদেশকে আরো বেশী বিপদাপন্ন করে কুলত্বে (Ahmed, 2004)। উপরস্ক জলবায়ু পরিবর্তনের ফলে বিছিন্ন প্রাকৃতিক দুর্যোগের সংখ্যা এবং তীব্রতা বেড়ে ঘাচেন্ত। বন্যা, খরা, জলোচছ্বাস এবং ঘৃর্ণিঝড় সামনের দিনগুলোতে আরো তীব্র আকার ধারণ করবে। অনেকের মতে আন্তে আন্তে এই পরিবর্তনিগুলো শপ্টজাবে দেখা দিতে তর্ম্ব করেবে। অনেকের মতে আন্তে আন্তে এই পরিবর্তনিগুলো শপ্টজাবে দেখা দিতে তর্ম করেছে। এই দুর্যোগগুলো গত বিশ বছরে গড় আয় বৃদ্ধি এবং দারিদ্রাতা নিরসনে বাংলাদেশের অর্জনকে হুমকির মুখে ফেলছে যা সম্প্রাণ করিব করে কুলবে (BCCSAP, 2009)। অর্জীতে বাংলাদেশ দুর্যোগ ব্যবস্থাপনায় তথুমাত্র আগে এবং পুনর্বাসনের উপর জোর দিত। কিন্তু নকইরের দশকের পর থেকে দুশ্য বদলাতে তর্ম করে এবং বাংলাদেশ সররকার এখন আণ এবং পুনর্বাসনের পরিবর্তে সার্বিক ক্রমানোর চেষ্টা করে যাচেছ। একটি ঝুঁকি সহনশীল সমাজ গঠনের ক্ষেত্রের প্রথম পদক্ষেপ হলো স্থামীয় পর্যায়ে ঝুঁকি সম্পর্কিত তথা সঞ্জয় ও সংকলন করা।

চিত্র ১.২.১: দুর্যোগ ঝুঁকি ব্যবস্থাপনা চক্র Figure 1.2.1: Disaster Risk Management Cycle

দুর্যোগের ঝুঁকি হ্রাস একটি বৈশ্বিক অগ্রাধিকার

১৯৯০-২০০০ এর দশকটিকে জাতিসংখ International Decade for Natural Disaster Reduction (IDNDR) হিসেবে ঘোষণা করেছে। তার পরবর্তিতে International Strategy for Disaster Reduction (ISDR) গঠিত হয়। এই কৌশল শীর্ষ পর্যায় থেকে তথ্যস্থা পর্যন্ত তথ্যকথিত চাপিয়ে দেওয়ার যে প্রথাগত নিয়ম তা বাদ

দিয়ে অংশগ্রহণ মূলক দুর্যোগ ব্যবস্থাপনা চক্রের প্রয়োজনীয়তা সম্পর্কে গুরুত্ব আরোপ করে। এতে পুনর্বাসন, প্রস্তুতি এবং একটি সার্বিক কর্মসূচির মাধ্যমে দর্যোগের কৃত্তি কর্মানো এবং এডানোর উপরে জোর দেয়া হয়েছে।

চিত্র ১.২.১ এ দুর্যোগ ব্যবস্থাপনার যে চক্রটি দেখানো হয়েছে তা চারটি পর্যায় নিয়ে গঠিতঃ দুর্যোগ পূর্ব পর্যায়ে প্রতিরোধ, প্রস্তুটি, দুর্যোগ পরবর্তী পর্যায়ে প্রতিরোধ নায়। ও পুনর্বাসন। প্রতিরোধ পর্যায়ের উদ্দেশ্য হলো দুর্যোগের ক্ষতি হ্রাস করা (যেমনঃ বন্যা প্রতিরোধে বাঁধ বা প্রাচীর নির্মাণ)। দুর্যোগের প্রভাব হ্রাস করার জল্য যে সব পদক্ষেপ নেয়া হয় তা 'প্রস্তুতি' হিসেবে বিবেচিত হয় (যেমনঃ গণ সচেতনতা বৃদ্ধি) এবং এর উদ্দেশ্য দুর্যোগ প্রতিহত করা নয়। দুর্যোগজনিত 'প্রতিক্রিয়া' বলতে বোঝায় উদ্ধার কর্মসূচি, প্রাথমিক চিকিৎসা এবং অল্লি নির্বাপণ প্রকৃতি। 'পুনর্বাসন/পুনানির্মাণ পর্যায়ে দুর্যোগ্রাস সম্পর্কিত সকল কার্যাবলি অন্তর্গত। দুর্যোগ কুঁকি কমানোর ক্ষেত্রে প্রতিটি পর্যায়ে সঠিক পদক্ষেপ সার্বিক দুর্যোগের কুঁকি কমাতে কার্যকর ভূমিকা রাখতে পারে।

Risk information is essential in all phases of disaster management

A general strategy for disaster risk reduction should initially start by establishing a risk management context, criteria and by characterizing the potential threats to the community and its environment (the hazards). Secondly, it should analyze the social and physical vulnerability of the community to determine the potential risks from a range of hazardous scenarios in order to implement effective measures to reduce the damage and casualties. The final goal of the reduction of disaster risk in the present and the control of future disaster risk should be achieved by combining both structural and non-structural measures that will foster risk management as an integrated theory and practice. This should be incorporated into all stages of a community's development process, not just as a post disaster response. Disaster risk management (DRM) requires a deep understanding of the underlying factors that lead to disasters. The process will help to arrive at solutions that are practical, appropriate and sustainable for the communities at risk, Evidently, managing risk in this manner requires a consensual and collaborative approach. The United Nations International Strategy for Disaster Reduction (UNISDR) has widely advocated new ways where authorities, communities, experts and other stakeholders can jointly diagnose problems, decide on plans of action and implement them. Clearly a new ethic of disaster risk management is emerging based on 'informed consent' as opposed to paternalism. Risk assessment as a starting point for further risk management processes should, in turn, be a multifaceted activity, aimed at integrating the likelihood and possible consequences of an event with subjective interpretations (perceptions) of interacting, heterogeneous actors. Figure 1.2.2 shows a DRM framework that focuses on the use of (spatial) risk information.

Risk Assessment in the Core Context of Disaster Management in Bangladesh

Bangladesh has created a simplistic model to guide disaster risk reduction and emergency response management efforts in Bangladesh. The model has three key elements and ensures that the move to a more comprehensive risk reduction culture remains central to all efforts.

Positioning the risk assessment in the existing Disaster Management System

The Ministry of Disaster Management and Relief (MoDMR) of the Government of Bangladesh has the responsibility for coordinating national disaster management efforts across all agencies. The Ministry issued the Standing Orders on Disaster (SOD) to guide and monitor disaster management activities in Bangladesh. The SOD has been prepared with the avowed purpose of making the concerned persons to understand their duties and responsibilities regarding disaster management at all levels, and accomplishing them. All Ministries, Divisions/Departments and Agencies shall prepare their own Action Plans in respect of their responsibilities under the Standing Orders for efficient implementation. The National Disaster Management Council (NDMC) and Inter-Ministerial Disaster Management Coordination Committee (IMDMCC) ensure coordination of disaster related activities at the National level. The respective District, Upazila and Union Disaster Management Committees do coordination at district, upazila and union levels. The Department of Disaster Management renders all assistance to them by facilitating the process. A series of inter-related institutions, at both national and sub-national levels have been created to ensure effective planning and coordination of disaster risk reduction and emergency response management. Comprehensive Disaster Management Programme (CDMP II), a project under the Ministry of Disaster Management generates the risk information through Community Based Risk Assessment (CRA).

চিত্ৰ ১.২.২: দুৰ্যোগ ঝুঁকি ব্যবস্থাপনা কাঠামো Figure 1.2.2: Disaster Risk Management Framework

বাংলাদেশের দুর্যোগ ব্যবস্থাপনা মডেল ঝুঁকি পরিবেশ নির্ণয় ও পুনঃনির্ণয় প্রযুক্তিগত ও প্রথাগত পর্যালোচনা জলবায় পরিবর্তন ও জলবায়বৈচিত্রোর প্রভাব সামাজিক ঝুঁকি নিরপণের বহুল ব্যবহৃত মডেলের ব্যবহার বিপদাপন্তা ও ঝাঁকি নির্ণায়কের প্রতিবেদন তৈরি সকল পরিবেশগত আপদ, ঝুঁকি ও ক্ষেত্র তুলে ধরা বঁকি পরিবেশ ব্যবস্থাপনা • বাঁকি হাসের পদ্ধতিগুলোর মধ্যে সমন্বয় সাধারন আপদ (পরিবেশগত) হতে ঝুঁকি ভিত্তিক কর্মসূচিতে পরিবর্তন অংশীদারীতের মাধামে টেকসই সেবা প্রদান প্রযক্তি ও প্রথাগত বিশ্রেষণের মাধ্যমে দর্যোগের প্রস্তৃতি তাৎক্ষণিক ব্যবস্থা গ্রহণ ও পূর্ববর্তী সংক্রেত ব্যবস্থাকে শক্তিশালী করা হুমকির পরিবেশে/অবস্থায় সাডা প্রদান পদ্ধতিসমহ স্ত্রিয়করণ ও সম্পদ এক্ত্রিকরণ বিপদাপনুতা ও ঝুঁকি তথ্য ব্যবহার করে সম্ভাব্য ক্ষতির পরিমান অনুমান করা কার্যকরী যোগাযোগ ব্যবস্থা ও প্রতিবেদন তৈরি বহাল রাখা • শিক্ষিত ও অভিজ্ঞতাসমূহ নথিবদ্ধ করা

চিত্র ১.২.৩: বাংলাদেশের দূর্যোগ ব্যবস্থাপনা মডেল Figure 1.2.3: Disaster Management Model in Bangladesh

দুর্যোগ ব্যবস্থাপনার প্রতিটি পর্যায়ে ঝুঁকি সম্পর্কে তথ্য অপরিহার্য

দুর্যোগের ঝুঁকি কমানোর একটি সাধারণ কৌশল হল প্রথমত একটি ঝুঁকি ব্যবস্থাপনার প্রেক্ষাপট এবং মানদন্ড নির্ধারণ করে একটি গোষ্ঠী বা পরিবেশের ওপর সম্লাব্য ভূমকি নিরূপণ করা (দর্যোগের হুমকি)। দ্বিতীয়ত, একটি জনগোষ্ঠীর সম্ভাব্য ঝঁকি নিরূপণ এবং প্রতিকারে কার্যকরী পদক্ষেপ নেয়ার জন্য সেই জনগোষ্ঠীর কাঠামোগত এবং সামাজিক বিপদাপনুতা বিশ্রেষণ করা। অবশেষে, দর্যোগের বর্তমান ঝাঁকি হাস এবং ভবিষাৎ ঝাঁকি নিয়ন্ত্রনের জন্য কাঠামোগত এবং অকাঠামোগত উভয় রকম পদক্ষেপের সমাবেশ ঘটিয়ে একটি সুসংহত ধারণা এবং চর্চার বিকাশ ঘটাতে হবে। এটি গুধুমাত্র দুর্যোগ পরবর্তী পর্যায়েই নয় বরং দর্যোগের সকল পর্যায়ে অন্তর্ভক্ত করতে হবে। দর্যোগ ব্যবস্থাপনার জন্য দর্যোগের কারণ সম্পর্কে গভীর জ্ঞান থাকা প্রয়োজন। শুধুমাত্র তাহলেই একটি ঝুঁকি প্রবণ জনগোষ্ঠীর জন্য দুর্যোগ ব্যবস্থাপনার টেকসই, ব্যবহারিক এবং সঠিক সমাধানে পৌছানো সম্ভব হবে। এভাবে দুর্যোগের ঝুঁকি কমানোর জন্য অবশ্যই একটি সর্বসম্মত ও সহযোগিতামূলক মনোভাব প্রয়োজন। The United Nations International Strategy for Disaster Reduction (UNISDR) এমন একটি সমাধানের পথ বলে যা সংশ্রিষ্ট কর্তপক্ষ, সমাজ, বিশেষজ্ঞ এবং অংশীদারদের যৌথ উদ্যোগের মাধ্যমে সমস্যা চিহ্নিত, পরিকল্পনা প্রণয়ন ও তা বাস্তবায়ন করতে পারে। এক্ষেত্রে একটি বিষয় পরিষ্কার যে বর্তমানে দর্যোগ ব্যবস্থাপনার ক্ষেত্রে একটি 'সর্বসম্মতি মূলক' মনোভাব তৈরি হচ্ছে যা পূর্বের কর্তত্বপূর্ণ মনোভাবের ঠিক বিপরীত। ঝঁকি নিরূপণ একটি বহুমুখী কার্যক্রম এবং এর উদ্দেশ্য হলো একটি বুঁকিপূর্ণ ঘটনার সম্ভাব্য ফলাফলের ভিন্ন ভিন্ন বিশ্লেষণ প্রদান করা। চিত্র ১.২.২ এ DRM এর কাঠামো দেখানো হয়েছে যা স্থান ভিত্তিক ঝুঁকির তথ্য প্রদান করে।

বাংলাদেশের দুর্যোগ ব্যবস্থাপনার প্রধান ঝুঁকি পরিমাপ

দুর্যোগের ঝুঁকি হাস এবং জরুরি অবস্থা মোকাবিলার জন্য বাংলাদেশ একটি সহজ ও সাধারণ কাঠামো তৈরি করেছে। কাঠামোটিতে তিনটি প্রধান উপাদান রয়েছে যা বলে দেয় যে সার্বিক ঝঁকি হাস সকল প্রচেষ্টার কেন্দ্র বিন্দতে থাকছে।

বিদ্যমান দুর্যোগ ব্যবস্থাপনা পদ্ধতিতে ঝুঁকি নিরূপণ বিষয়টি অন্তর্ভুক্তিকরণ

বাংলাদেশ সরকারের দর্যোগ ব্যবস্থাপনা এবং ত্রাণ মন্ত্রণালয়ের (MoDMR) এর দায়িত হলো দুর্যোগ ব্যবস্থার ক্ষেত্রে সবগুলো সংস্থার মধ্যে সমন্বয় সাধন করা। মন্ত্রণালয়টি দুর্যোগ ব্যবস্থাপনা কার্যক্রম পরিচালনা ও পরিবীক্ষণের জন্য একটি Standing Ordrs on Disaster (SOD) প্রকাশ করেছে। স্ট্যান্ডিং অর্ডারটি দর্যোগ ব্যবস্থাপনায় সংশ্রিষ্ট সকল ব্যক্তির দায়িত এবং কর্তব্য সম্পর্কে ধারণা দেয়ার উদ্দেশ্যে তৈরি করা হয়েছে। SOD অনুযায়ী সকল মন্ত্রণালয়, বিভাগ এবং সংস্থা স্ব-স্থ দায়িত অনুযায়ী নিজস্ব দুর্যোগ মোকাবিলার পরিকল্পনা তৈরি করবে। The National Disaster Management Council (NDMC) এবং Inter-Ministerial Disaster Management Coordination Committee (IMDMCC) জাতীয় পর্যায়ে দর্যোগ সম্পর্কিত সকল কার্যাবলি সমন্বয় সাধন করে থাকে। জেলা, থানা এবং ইউনিয়ন দর্যোগ ব্যবস্থাপনা কমিটি স্ব-স্ব জেলা, উপজেলা এবং ইউনিয়নে দর্যোগ ব্যবস্থাপনার সমন্বয় সাধন করে থাকে। দুর্যোগ ব্যবস্থাপনা অধিদণ্ডর এক্ষেত্রে সহায়তা দিয়ে থাকে। কার্যকর দর্যোগ ব্যবস্থাপনা, সমন্বয় এবং বাঁকির,হাস করার জন্য জাতীয় এবং স্থানীয় পর্যায়ে অনেকণ্ডলো প্রতিষ্ঠান সৃষ্টি করা হয়েছে। সার্বিক দর্যোগ ব্যবস্থাপনা কর্মসূচি কম্প্রিকেনসিভ ডিজাস্টার ম্যানেজমেন্ট প্রোগ্রাম (সিডিএমপি ২), যা দুর্যোগ মন্ত্রণালয়ের অধীনে একটি কর্মসূচি, নিয়মিত কমিউনিটি রিন্ধ অ্যাসেসমেন্টের (CRA) মাধ্যমে বুঁকি সম্পর্কিত তথ্য প্রস্তুত করে থাকে।

1.3 Objective of the atlas

Ultimate goal of the Upazila Atlas is to facilitate the local government authority with easy, accessible and credible information and reference for local level risk reduction and adaptation planning.

Specifically the Upazila Atlas is intended to:

- a) Provide access to credible references of risk information. This knowledge will provide the initial ground for the community based risk assessment (CRA) exercise.
- b) Mainstream DRR and CCA planning interventions, based on the risk knowledge portrayed in risk atlas.
- c) Provide a basis for further investigation and studies on local level adaptation plan for action.

1.4 Methodology

The Upazila Atlas has been prepared through following major steps:

- Identification of current natural hazards in Bangladesh
- Integrated risk and vulnerability analysis

Identification of current natural hazards

On the basis of field survey and the literature review, all natural hazards, their risk and finally the vulnerability of the selected upazilas have been identified.

Integrated risk and vulnerability analysis

Risk assessment of a particular area depends upon a number of factors. It should include the type and severity of the hazard; the elements are exposed to a particular hazard and the sensitivity of the elements that are exposed. To represent this idea risk can be calculated usine the following formula:

Risk = Hazard X Exposure X Vulnerability

Hazard refers to the possible, future occurrence of natural or human-induced physical events that may have adverse effects on vulnerable and exposed elements (White, 1973; UNDRO, 1980; Cardona, 1990; UNDHA, 1992; Birkmann, 2006b). Although in the past risk assessment methods have been ascribed the same meaning as risk, it is now widely accepted that it is a component of risk and not risk itself.

Out of the two other determinants of risk, exposure refers to the inventory of elements in the area in which hazard events may occur (Cardona, 1990; UNISDR, 2004, 2009b). Vulnerability refers to the propensity of exposed elements such as human beings, their livelihoods, and assests to suffer adverse effects when impacted by hazard events (UNDRO, 1880; Cardona, 1986, 1990, 1993; Liverman, 1990; Maskrey, 1993b; Cannon, 1994, 2006; Blaikie et al., 1996; Weichsel Gartner, 2001; Bogardi and Birkmann, 2004; UNISDR, 2004, 2009b; Birkmann, 2006b; Dassen et al., 2006; Thawissen, 2006).

The methodology of this particular work follows the above equation of risk assessment. The risk has been calculated based on the hazard, exposure and vulnerability of the selected upazila. The following diagram represents the steps of risk assessment have been used (Figure 1.4.1).

১.৩ এ্যাটলাসের উদ্দেশ্য

উপজেলা দুর্যোগ মানচিত্রের উদ্দেশ্য হলো সহজ, সুলভ এবং বিশ্বাসযোগ্য তথ্য দিয়ে স্থানীয় সরকারি কর্তৃপক্ষকে ঝুঁকি.হাস ও অভিযোজন পরিকল্পনা প্রথমনে সহায়তা করা।

উপজেলা দর্যোগ মানচিত্রের সনির্দিষ্ট উদ্দেশ্যগুলো হলোঃ

- ক) বঁকির তথ্য বিষয়ে বিশ্বাসযোগ্য সত্র জানানো যা জনগোষ্ঠীর বঁকি নিরূপণে প্রাথমিক ধারণা দেবে।
- খ) বঁকি মানচিত্রে বর্ণিত বঁকি সম্পর্কিত জ্ঞানের মাধ্যমে DRR এবং CCA পরিকল্পনাকে মলধারায় নিয়ে আসা।
- গ) স্থানীয় অভিযোজন পরিকল্পনা প্রণয়ন ও বাস্তবায়নের ক্ষেত্রে অধিকতর অনুসন্ধান এবং বিশ্লেষণের সুযোগ সৃষ্টি করা।

১.৪ কার্যপদ্ধতি

চিত্র ১.৪.১: ঝুঁকি পর্যালোচনার ধাপসমূহ Figure 1.4.1: Steps of Risk Assessment

উপজেলা দুর্যোগ মানচিত্রটি নিয়োক্ত ধাপগুলো অনুসরণ করে প্রস্তুত করা হয়েছেঃ

- বাংলাদেশের সমসাময়িক প্রাকৃতিক আপদগুলো চিহ্নিত করা।
- সমন্বিতভাবে ঝাঁকি এবং বিপদাপরতা বিশ্লেষণ করা ।

সমসাময়িক প্রাকৃতিক আপদগুলো চিহ্নিত করণ

মাঠ পর্যায়ের জরিপ এবং বিদ্যমান অন্যান্য গবেষণা ফলাফলের ওপর ভিত্তি করে নির্দিষ্ট ভৌগোলিক এলাকার প্রাকৃতিক আপদ, সেই অঞ্চলগুলোর ঝুঁকি এবং বিপদাপন্নতা চিহ্নিত করা হয়েছে।

ঝুঁকি এবং বিপদাপনুতা বিশ্লেষণ করা

কোন নির্দিষ্ট অঞ্চলের ঝুঁকি পরিমাপ অনেকগুলো বিষয়ের ওপর নির্ভরশীল। আপদের ধরন ও তীব্রতা, আপদে আক্রান্ত হওয়ার মতো উপাদান এবং স্পর্শকাতরতা এর মধ্যে অন্তর্ভুক্ত। নিম্নের সম্রুটি দ্বারা ঝঁকি পরিমাপ করা হয়েছে।

ঝুঁকি = আপদ x দুর্যোগ আক্রান্ততা x বিপদাপন্নতা

আপদ বলতে বোঝায় সন্ধাব্য প্রাকৃতিক বা মানব সৃষ্ট ঘটনা যা বিপদাপন্ন এবং আক্রান্ত হওয়ার মতো উপাদানের ওপর বিরক্ষ প্রভাব ফেলতে পারে (White, 1973; UNDRO, 1980; Cardona, 1990; UNDHA, 1992; Birkmann, 2006b)। যদিও পূর্বে কুঁকি নিরূপণ পদ্ধতি এবং কুঁকিকে একই মনে করা হত। কিন্তু বর্তমানে পদ্ধতিটোকে কুঁকির একটি উপাদান মনে করা হয়, ঝুঁকি মনে করা হয় না।

ঝুঁকির অন্য দু'টি উপাদানের মধ্যে দুর্বোগ আক্রান্ততা বলতে বোঝায় একটি অঞ্চলের ঐ সমস্ত উপাদান যা দুর্বোগ আক্রান্ত হতে পারে (Cardona, 1990; UNISDR, 2004, 2009b)। বিপাদানুয়া বলতে বোঝায় যে কোন উপাদান যেমনঃ মানুষ, তার জীবিকা এবং সম্পদ যার ওপরে আপদ ও তার প্রভাব পাছতে পারে ও আক্রান্ত হতে পারে (UNDRO, 1980; Cardona, 1986, 1990, 1993; Liverman, 1990; Maskrey, 1993b; Cannon, 1994, 2006; Blaikie et al., 1996; Weichsel Gartner, 2001; Bogardi and Birkmann, 2004; UNISDR, 2004, 2009b; Birkmann, 2006b; Janssen et al., 2006; Thywissen, 2006)।

ঝুঁকি নিরুপন ও বিপদাপন্নতা বিশ্লেষণের কাজটি উপরোক্ত সমীকরণটির ওপর ভিত্তি করে করা হয়েছে। ঝুঁকি পরিমাপ করা হয়েছে উপজেলাগুলোর বিপদাপন্নতা, দুর্যোগ আফ্রান্ডতা এবং আপদের ওপর ভিত্তি করে। উল্লিখিত ছকটিতে (চিত্র ১.৪.১) ঝুঁকি পরিমাপের জন্য ব্যবহৃত বিভিন্ন ধাপগুলো দেখালো হয়েছে।

Hazard Analysis

Hazard analysis is the first step of risk assessment. Potential hazards of the country have been identified, and those are flood, drought, storm surge and soil salinity. In the hazard map, spatial variation of hazard affected area with the variation of hazard intensity has been shown. The intensity of each hazard has been classified separately on an ordinal scale using relative hazard intensity classes.

The information of each hazard have been integrated and produced a combined hazard map to identify and predict the overall vulnerability of the region. Weighting of hazards implies normative decisions, which has been given using Delphi method, developed by Helmer (1966). On this basis, the integration of all hazards and the production of an integrated hazard map have been prepared.

Exposure Analysis

Exposure means the elements that fall under the hazard risk areas. In this particular study, the research team calculates the exposure of settlements area, agricultural production (Aman, Boro, Gher, etc.), forest, protected areas and roads have been calculated. It means, for example; the areas of settlements are exposed to different hazard zones (like low intensity flood, medium intensity flood or high intensity flood). Same way exposure for other elements is also calculated. Once the exposure is calculated, it is, again normalized for each of the units. The following table-1.4.1 summarizes the exposure indicators:

Vulnerability Analysis

The analysis of vulnerability is the most difficult part of any risk assessment. It reveals the sensitivity of people, infrastructure or agriculture production to a given hazard. After reviewing the methodology of different literature of assessing vulnerability, the following broad indicators of vulnerability analysis are selected for this study.

- Physical
- Social
- Economical
- Environmental

Each of the above indicators has been analysed by using a set of sub indicators. The indicators used in this particular study are described in the following table (Table 1.4.2).

Integrated risk assessment, risk ranking and visualization

The information from the integrated hazard map and the integrated vulnerability map has been superimposed to produce the risk map using the formula (given in section 1.4). The map shows the integrated risk that each rezion is exposed to.

আপদ বিশ্লেষণ

আপদ বিদ্রোধণ হচ্ছে বৃঁকি নিরূপনের প্রথম ধাপ। আমাদের দেশের সম্ভারা যে আপদভলো চিহিত হয়েছে । বাং।, খরা, ভলোড্রাস এবং মাটির লবণাক্তবা। আপদ মানটিরপ্রলোতে বিপদাপন্নতার তীব্রতা এবং অবস্থান চিহিত করা হয়েছে। বিপদাপন্নতার তীব্রতা পরিমাপ করা হয়েছে উপাতের ওপর ভিত্তি করে, যেমনঃ কোন একটি আপদের পৌনারপৌনিকতা এবং তীব্রতা। প্রতিটি আপদের তীব্রতা বিশ্লেমণ করে একে পাঁচটি প্রেণিতে ভাগ করা হয়েছে।

সবগুলো বিপদাপন্নতা সম্পর্কিত তথ্য একত্রিত করে একটি সমন্বিত মানচিত্র তৈরি করে ঐ এলাকার বিপদাপন্নতা দেখানো হয়েছে। বিপদাপন্নতার ভিন্ন ভিন্ন ভর দিয়ে ডেলফি পদ্ধতি ব্যবহার করে এটি করা হয়েছে। এভাবে সবগুলো বিপদাপন্নতা মানচিত্র তৈরি করা হয়েছে।

দর্যোগ আক্রান্ততা বিশ্লেষণ

দুর্যোগ আক্রান্ততা বলতে বোঝায় যে কোন উপাদান যা ঝুঁকির মধ্যে রয়েছে। এ কাজটিতে জনবর্সটে, কৃষি উৎপাদান, বন এবং রাজা-ঘাট প্রভৃতির দুর্যোগ আক্রান্ততা পরিমাপ করা হয়েছে। অর্থাং বিভিন্ন প্রথম বিভিন্ন রক্ষম বন্যা)। একই ভাবে অন্যান্ত উপাদান গুলোর ক্ষেত্রেও দুর্যোগ আক্রান্ততা পরিমাপ করা বয়েছে। আক্রান্ততা পরিমাপের পর প্রতিক্ষেত্রক্ত আবার তা বর্ণনা করা হয়েছে। আক্রান্ততা পরিমাপের পর প্রতিক্ষেত্রক্ত আবার তা বর্ণনা করা হয়েছে।

ছক ১.৪.১ ঃ দুর্যোগ আক্রান্তভার নির্দেশক বা স্তর সমূহ

নিদেশক অথবা স্তর	वर्णमा
বসতি	বিভিন্ন মাত্রার দুর্যোগে আক্রান্ত বসিত এলাকা সমূহ
আমন ধান	বিভিন্ন মাত্রার দুর্যোগে আক্রান্ত আমন ধানের এলাকা সমূহ
রোরো ধান	বিভিন্ন মাত্রার দুর্যোগে আক্রান্ত বোরো ধানের এলাকা সমূহ
রাস্তা	বিভিন্ন মাত্রায় দুর্যোগে আক্রান্ত রাস্তার এলাকা সমূহ

বিপদাপন্নতা বিশ্লেষণ

বিপদাপন্নতা বিশ্লেষণ ঝুঁকি পরিমাপের ক্ষেত্রে সবচেয়ে বেশী কঠিন কাজ। বিপদাপন্নতা বলতে বোঝায় আপদের প্রতি মানুষ, কাঠামো অথবা কৃষি উৎপাদনের সংবেদনশীলতা। বিপদাপন্নতা বিশ্লেষনে ব্যবহৃত পূর্বের বিভিন্ন গবেষণার গবেষণা পদ্ধতি বিশ্লেষণ করার পর নিচের সূচক স্থালাকে চিহ্নিত করা হারাছেঃ

- কাঠামোগত
- সামাজিক
- অর্থনৈতিক
- পবিবেশগত

প্রতিটি সৃচককে আরো কিছু অণুসূচক দারা বিশ্লেষণ করা হয়েছে। সেগুলো নিচের তালিকায় আলোচনা করা হয়েছে (ছক ১.৪.২)।

সমন্বিত ঝঁকি বিশ্লেষণ, ঝুঁকিক্রম তৈরি ও মানচিত্র প্রস্তুত

আপদ ও বিপদাপনুতার মানচিত্র থেকে তথ্য নিয়ে এমন একটি সমস্বিত ঝুঁকি মানচিত্র তৈরি করা হয়েছে যা প্রতিটি অঞ্চলের সমস্বিত ঝুঁকিকে চিহ্নিত করে।

ছক ১.৪.২ ঃ বিপদাপনতার নির্দেশকসমহ

বিপদাপনুতার ধরন	নিৰ্দেশক	বৰ্ণনা	সূত্র
ভৌত	জনসংখ্যার ঘনত্	বসতি এলাকায় জনসংখ্যার ঘনত্	বিবিএস, ২০১১
বিপদাপন্নতা	কাঠামোর ধরণ	মোট বাড়ির তুলনায় কাঁচা বাড়ির শতকরা হার	বিবিএস, ২০১১
	সড়ক ব্যবস্থা	কাঁচা রাস্তার শতকরা হার	এলজিইডি
সামাজিক বিপদাপন্নতা	খানার আকার	মোট খানার সংখ্যার তুলনায় ৪ সদস্যের অধিক সংখ্যক খানার শতকরা হার	বিবিএস, ২০১১
	শিশু ও বয়স্ক নির্ভরশীল ব্যক্তি	মোট খানার তুলনায় শিশু (০-৯) ও বৃদ্ধ (৬৫+) নির্ভরশীল ব্যক্তিদের শতকরা হার	বিবিএস, ২০১১
	অশিক্ষার হার	জনসংখ্যার মোট অশিক্ষিত ব্যক্তির শতকরা হার	বিবিএস, ২০১১
	গৃহ মালিকানা	মোট বাড়ির সংখ্যার তুলনায় ব্যক্তিগত মালিকানায় নেই এমন বাড়ির সংখ্যা	বিবিএস, ২০১১
অর্থনৈতিক বিপদাপন্নতা	কৃষি জমি	মোট কৃষি জমির শতকরা হারে আমন এবং বোরো জমির অংশ	স্পারসো, ২০১২
	জীবিকার বৈচিত্র্য	বৈচিত্র্য স্চকের মাধ্যমে জীবিকার বৈচিত্র্য পরিমাপ করা হয়েছে	বিবিএস, ২০১১
বৈকারত্বের হার		মোট জনসংখ্যার যে অংশ কোন রকম অর্থনৈতিক কর্মকান্ডের সাথে জড়িত নয় তার শতকরা হার (এ ক্ষেত্রে গৃহস্থালী কাজকর্মকেও অর্থনৈতিক কর্মকান্ডের মধ্যে অন্তর্ভুক্ত করা হয়েছে)	বিবিএস, ২০১১
	বৈদ্যুতিক সংযোগ	বৈদ্যুতিক সংযোগ নেই এমন খানাগুলোর শতকরা হার	বিবিএস, ২০১১
পরিবেশগত বিপদাপন্নতা	পানি সরবরাহ	পানি সরবরাহ ব্যবস্থা নেই এমন খানাগুলোর শতকরা হার	বিবিএস, ২০১১
	পয়ঃনিদ্ধাশন	স্বাস্থ্যসম্যত পায়ধানা নেই এমন ধানাগুলোর শতকরা হার	বিবিএস, ২০১১

2.1 Physiography and Climat of the Upazila

Physiography

The physiography of Bangladesh can be divided into twenty four sub-regions based on physical features and drainage pattern. Madaripur Sadar upacila of Madaripur district is located within the Meghna Estuarine islands and Chars. The rivers of this part of the delta form three main estuaries, the Hariaghata, the Agunmukha and the Meghna.

Temperature

It is important to analyse the temperature to understand the climate of a particular area. The meteorological station -11513 of Madaripur is the representative station for Madaripur Sadar upazila. Figure 2.1.1 shows the usual average temperature in January varies from 17°C to 20°C. The average temperature of Madaripur Sadar upazila increases gradually and reaches the highest in May. Average temperature in hot seasons varies from 27°C to 30°C in this upazila.

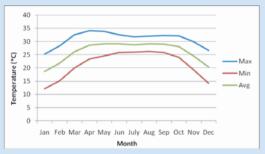


Figure 2.1.1 Monthly average temperature of Station-11513 from year 1948 to 2008 চিত্র ২.১.১: স্টেশন ১১৫১৩ র ১৯৪৮-২০০৮ সাল পর্যন্ত মাসিক গড তাপমাত্রা।

Rainfall

Mean annual rainfall estimated for Madaripur Sadar is 2001.31 mm. Figure 2.1.2 shows that there is hardly any rainfall from November to February (dry season). These four months contain less than 5% of the annual rainfall. The amount of rainfall increases rapidly from June to September (monsoon season) and reaches to 1265mm. 49% rainfall is observed during this season.

Humidity, Sunshine Hour and Wind Speed

The amount of humidity in Madaripur Sadar upazila is higher in wet season. Duration of sunshine hour is longer in dry season and wind flow is stronger in wet season. The average annual wind speed is 126.58 km/ day in dry season whereas it is 129.22 km/dav in wet season (table 2.1.1).

২.১ উপজেলার ভূ-প্রকৃতি ও জলবায়ু

ভূ-প্রকৃতি

ভৌত বৈশিক্টা ও নিকাশন ব্যবস্থার উপর ভিত্তি করে বাংলাদেশের ভূ-প্রকৃতিকে চকিবশটি অঞ্চলে ভাগ করা যায়। মাদারীপুর সদর উপজিলাটি মেঘনা নদীর অববাহিনয়া ১৪ অঞ্চলে অবস্থিত। বাংলাদেশের এই অঞ্চলের নদীঙলো হতে হারিয়াখাটা, আঙনমুখা এবং মেঘনা এই উল্লেখ্যযোগ খিডিতলোর উৎপত্তি।

তাপমাত্রা

কোন একটি অঞ্চলের জলবায়ুর প্রকৃতি বোঝার জন্য তাপমাত্রা বিশ্লেষণ করা প্রয়োজন। মাদারীপুর সদর উপজেলার জলবায়ু সম্পর্কিত তথ্যের জন্য মাদারীপুর আবহুওয়া অফিস-১১৫১৩ সবচেয়ে প্রতিনিধিত্যুক্তন। চিত্র ২.১.১ থেকে দেখা যায় যে জানুয়ারি মাসের গড় তাপমাত্রা সাধারণত ১৭০ সেঃ থেকে ২০০ সেঃ এর মধ্যে উঠানামা করে। মাদারীপুর সদর উপজেলার গড় তাপমাত্রা জানুয়ারি মাসের পর থেকে ধীরে ধীরে বাড়তে থাকে এবং মে মাসে সর্বোক্ত পর্বায়ে গৌচায়। গ্রীযকালে গড় তাপমাত্রা ২৭০ সেঃ থেকে ৩০০ সেঃ এর মধ্যে উঠানামা করে।

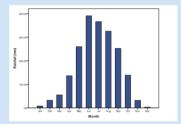


Figure 2.1.2: Monthly rainfall of Station-11513 from year 1948 to 2002 চিত্ৰ ২.১.২: আবহাওয়া অফিস ১১৫১৩'র ১৯৪৮-২০০২ সাল পর্যন্ত মাসিক বৃষ্টিপাতের পরিমাণ

বৃষ্টিপাত

মাদারীপুর সদর উপজেলার গড় বার্ষিক বৃষ্টিপাতের পরিমাণ ২০০১.৩১ মি.মি.। চিত্র ২.১.২ থেকে দেখা যায় যে নডেম্বর থেকে ফেব্রুয়ারি মাস পর্যন্ত (জক্ষ-মৌসুম) এখানে কোন বৃষ্টিপাত হয় না বললেই চলে। এ সময় মোট বার্ষিক বৃষ্টিপাতের ৫ শতাংশের চেয়েও কম বৃষ্টিপাত হয়। ভুন থেকে সেপ্টেম্বর মাসে (বর্ষাকাল) বৃষ্টিপাতের পরিমাণ দ্রুলত বৃদ্ধি পায় এবং ১২৬৫ মি.মি. পর্যন্ত হতে দেখা যায়। মোট বৃষ্টিপাতের ৪৯ শতাংশই বর্ষাকালে হয়ে থাকে।

Table 2.1.1: Seasonal Change of Humidity, Sunshine Hour and Wind Speed at Station -11513 ছক ২.১.১: স্টেশন ১১৫১৩'র অর্দ্রেডা সূর্যালোক ঘন্টা এবং বাতাসের গতিবেগের মৌসুমী পরিবর্তন।

নিদেশ্ক	আদ্রতা (%)	সূর্যালোক (ঘন্টা/দিন)	বাতাসের বেগ
শুষ্ক মৌসুম	90,90	৬.২১	\$26.6F
বর্ষাকাল	৮৩.০৩	8.08	১ ২৯.২২

আর্দ্রতা, সূর্যালোক এবং বাতাসের বেগ

বর্ষাভালে মাদারীপুর সদর উপজেলার বাতাসে আর্দ্রতার পরিমাণ সবচেয়ে বেশী থাকে। তক্ক মৌসুমে দীর্ঘ সময় ধরে সূর্যালোক পাওয়া যায় এবং বর্ষাভালে বাতাসের গতি বেশী থাকে। তক্ক মৌসুমে বার্ষিক বাতাসের গড় গতিবেগ ১২৬,৫৮ কিমি/দিন এবং বর্ষাকালে এই গতিবেগ ১২৯,২২ কি.মি./দিন (ছক ২.১.১)

Evapotranspiration Rate

Figure 2.1.3 shows the evapotranspiration rate (mm/day) for Madaripur Sadar upazila. Evapotranspiration is the lowest in January (2.21 mm/day), the coldest month of the year. Similarly, highest evapotranspiration rate is found in April (4.95 mm/day), the hottest month of the year. Air becomes saturated with moisture during rainy season and results in lower evapotranspiration rate at that time. So, less irrigation is required during monsoon season in Madaripur Sadar upazila.

Climate Change

Climate change means a statistically significant variation in either average state of climate or in its variability for a longer period of time. Both the natural internal process and the external forces are responsible for climate change. Constant anthropogenic change and change in land use may result in climate change.

Climate Variability

Climate variability means the variation in the statistical condition of climate. It refers to variations in the average state and other statistics, like standard deviations, the occurrence of extremes, etc. Climate variability is caused due to internal and external variability.

Climatic Change and Trend Analysis in Madaripur Upazila

Trend analysis is important in climate research to detect, estimate and predict the significant factors of climate. It shows that there are no significant indicators for climate change in Madaripur Sadar upazila.

ion is the lowest in চিত্র ২.১.৩ থেকে মাদারীপুর

বাষ্পীভবন প্রস্থেদন এব হাব

চিত্র ২.১.৩ থেকে মাদারীপুর সদর উপজেলার বাম্পীভবন প্রস্থেদনের হার (মি.মি./দিন) জানা যায়। শীতলতম মাস ডিসেম্বর ও জানুয়ারিতে বাম্পীভবন প্রস্থোদনের হার সবচেয়ে কম থাকে (২.২১ মি.মি./দিন)। উষ্ণতম মাস এপ্রিলে এই হার থাকে সবচেয়ে বেশী (৪.৯৫ মি.মি/দিন)। বর্ষাকলে বাতাসে জলীয়বাশেপর পরিমাণ বেশী থাকায় বাম্পীভবন প্রস্থোদনের হার কমে যায়। এ কারণে মাদারীপুর সদর উপজেলায় বর্ষাকালে সেচের চাহিদা কম থাকে।

জলবায়ু পরিবর্তন

জলবায়ু পরিবর্তন বলতে কোন একটি অঞ্চলের দীর্ঘ সময়ের জলবায়ু পরিবর্তন বা পরিবর্তনশীলতা বোঝায় যা পরিসংখ্যানগত ভাবে তাৎপর্যপূর্ব। প্রাকৃতিক অভ্যন্তরীন অক্রিয়া, বাহিকে উপাদান, মানব সৃষ্ট কর্মকান্ত এবং ভূমি ব্যবহারের ধরনের পরিবর্তন ইত্যাদি জলবায় পরিবর্তনের জন্ম দায়ী।

জলবায় পরিবর্তনশীলতা

জলবায়ু পরিবর্তনশীলতা বলতে বুঝায় জলবায়ুর সংখ্যাগত অবস্থার তারতম্য। এই তারতমা বলতে জলবায়ুর গড় অবস্থা এবং অনানা পরিসংখ্যান যেমন মান বিচ্যুতি, অখাভাবিক আবহুওয়ার ইত্যাদিকে বোঝায়। অভান্তরীণ ও বাহ্যিক পরিবর্তনশীলতার উপর নির্ভর্কীণ হল জলবায়র পরিবর্তনশীলতা।

জলবায়র পরিবর্তন এবং মাদারীপর উপজেলার ধারা বিশ্রেষণ

জলবায়ু গবেষণার ধারা বিশ্লেষণ গুরুত্বপূর্ণ কারণ এর মাধ্যমে জলবায়ুর বিভিন্ন গুরুত্বপূর্ণ উপাদান সমূহের সনাজন্তরন, পরিমাপ এবং পূর্বাভাস দেয়া সম্ভর হয়। ধারা বিশ্লেষণ থেকে দেখা যায় যে, জলবায়ু পরিবর্তনের জন্য মাদারীপুর সদর উপজেলার কোন গুরুত্বপূর্ণ নির্দেশক নেই।

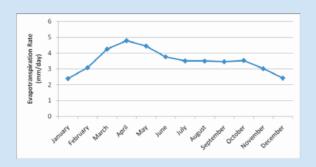


Figure 2.1.3 Evapotranspiration Rate (mm/day) at Madaripur Sadar Upazila চিত্র ২.১.৩: মাদারীপর সদর উপজেলার বাম্পীভবন প্রস্কেদনের হার (মি.মি./দিন)

2.2 Socio Economic Condition

Population

According to the population census of Bangladesh, the total population of the Madaripur Sadar upazila is around 283074 among which 140259 are male and 142815 are female. The total number of household is 60339. Table 2.2.1 shows the distribution of population and household in different unions of Madaripur Sadar upazila. The highest population is found in Ghatmahi union while Dhurail union has the lowest population.

Table: 2.2.1: Distribution of population ছক ২.২.১: জনসংখ্যার বিন্যাস

ইউনিয়ন	খানার সংখ্যা	জনসংখ্যা		
201444	AIAIN AKADI	জনসংখ্যা	পুরুষ (%)	মহিলা (%)
বাহাদুরপুর	২৩১৩	20p0p	9.৫৪	0.00
চিলার চর	829%	১৭৯৯২	89.৬	<i>৫</i> ২.8
ধুরাইল	১৮২৬	৮৫৮৭	89.৮	<i>৫</i> ২.২
দুদ্খালী	৩৫০১	১৫৭১৯	86.7	6.69
ঘাটমাঝি	৫২৯৩	২৫৬৮৮	৫০.২	8৯.৮
জাওদি	৫১৭৬	২৪২৯৩	4.68	৫০.৯
কালিকাপব	८४४७	Solohio	67.9	8hr 5

২.২ আর্থ-সামাজিক অবস্থা

क्रमञ्जू

জনসংখ্যা আদমশুমারী অনুযায়ী মাদারীপুর সদর উপজেলার মোট জনসংখ্যা ১,৮৩,০৭৪। যার মধ্যে পুরুষের সংখ্যা ১,৪০,২৫৯ এবং নারীর সংখ্যা ১,৪২,৮১৫। মোট খানার সংখ্যা ৬০,৩৩৯। ছক ২,২১ আদারীপুর সদর উপজেলার বিভিন্ন ইউনিয়নের জনসংখ্যা এবং খানার বিন্যাস দেখানো হয়েছে। সবচেয়ে বেশী জনবন্ধল ইউনিয়ন হল ঘটিমাঝি এবং সবচেয়ে কম জনবন্ধল ইউনিয়ন হল ধুরাইল।

Table: 2.2.1: Distribution of population ছক ২.২ জনসংখ্যার বিন্যাস

ইউনিয়ন	খানার সংখ্যা	জনসংখ্যা		
201191	Alalia alCani	জনসংখ্যা	পুরুষ (%)	মহিলা (%)
কেন্দুয়া	৫১৭৬	২৪৬৭০	0.0	0.0
খোয়াজপুর	6007	২৩২২৯	৪৯.৩	@o.9
কুনিয়া	৩৬০০	৩৫৫৮८	8,68	¢0.5
মোস্তফাপুর	6070	২৩৭৪৮	0.00	9.68
পাঁচখোলা	6709	২৩৭২৯	(°0.0	0.0
পিয়ারপুর	৩২৪১	\$8902	৪৮.৩	62.9
রাস্তি	0820	\$6069	©.09	৪৯.৭
শিরখাড়া	৩৫৪৩	\$688€	০.৫৪	0.69

(Source: Raw data from BBS, table no. C-03)

Housing

Three types of houses are seen in Bangladesh on the basis of construction materials. These are Pucca (Pamanent), Semi-pucca (semi-parmanent), and Kutcha & Jhupri (Temporary) houses. These three types of houses are considered to analyze the exposure and vulnerability of this particular study. Table 2.2.2 shows the percentage of pucca, semi-pucca, and kutcha & Jhupri houses in Madaripur Sadar Upazila. It depicts that the most of the houses are kutcha and Jhupri in Madaripur Sadar upazila. The highest percentage of kutcha and Jhupri houses is found in Dhurail union whereas the lowest percentage is found in Bahadurpur union.

Household Size

A household is defined as a group of people living together in a housing unit and sharing meals. This group of people can be relatives o non-relatives. Table 2.2.3 shows the percentage of different household sizes in Madaripur Sadar upazila.

Electricity Coverage

Electricity coverage is one of the determinant of the prosperity and economic well being of a certain area. A higher access rate to electricity indicates that the community is better-off. Table 2.2.4 shows the union wise coverage of electricity in Madaripur Sadar upazila. The table contains the percentage data of households that have access to electricity. Among the unions Pearpur Union has The highest percentage (about 8.3%) of electricity coverage is seen in Pearpur union while Dhurail union has the lowest percentage.

Land Cover

Land cover is the physical cover of the land in a certain area. Land cover is very important in the assessment of hazard risk, as landuse has influence on both the occurrence of hazard and exposure of elements. Figure 2.2.1 depicts the percentage of different land covers of Madaripur Sadar upazila. It is seen from the table (2.2.5) and figure (2.2.1) that settlement is the most dominant (around 26%) land cover in Madaripur Sadar upazila. Besides, a large percentage of land is water (about 24%) and fallow land (about 22 %) in this upazila. Moist land (about 15%) and crop (about 13%) are also prominent land covers in Madaripur Sadar.

Table 2.2.4: Electricity Coverage ছক ২.২.৪: বিদ্যুৎ সংযোগের ব্যাপ্তি

ইউনিয়ন	বৈদ্যুতিক সংযোগ (%)
বাহাদ্রপুর	৭৭.৩৯
চিলার চর	85.08
ধুরাইল	৬.৭৬
দুদ্খালী	৭৭.৯৬
ঘাটমাঝি	96.08
জাওদি	80,6%
কালিকাপুর	82.55
কেন্দুয়া	৬৭.৯২
খোয়াজপুর	80,68
কুনিয়া	৭৬.২৫
মোস্তফাপর	৭৬.৬৯

ইউনিয়ন	বৈদ্যুতিক সংযোগ (%)
পাঁচখোলা	৫৪.৫৬
পিয়ারপুর	৮৩.৭৭
রাস্তি	৬৮.৭৮
শিরখাড়া	৬৮.৭২

(Source: Raw data from BBS table no C-15)

Table 2.2.2: Distribution of different categories of houses

ছক ২.২.২: বিভিন্ন শ্রেণির বাডির বিন্যাস

ইউনিয়ন	বাড়ির ধরণ		
হভানরন	পাকা (%)	আধা-পাকা (%)	কাঁচা ও ঝুপরি (%)
বাহাদুরপুর	8.88	১৮.৬৬	৭৬.৯২
চিলার চর	২.৬৭	৬,৮০	৩৯.০৫
ধুরাইল	2.69	8,90	৯৩.৬৩
नू म्थाली	৫.৭২	26.20	୩৯.১৫
ঘাটমাঝি	2.22	১ ২.৬১	b@.\$8
জাওদি	১.৯৮	৬.৭২	०७.८४
কালিকাপুর	2.66	৭.৭৩	৯৩.৬৯
কেন্দুয়া	۶.۵۹	৮.৫৮	৮৯.৪৬
খোয়াজপুর	৬৫.১	৬.২৩	৯১.৮৩
কুনিয়া	২.৬৩	১২.৮২	89,84
মোস্তফাপুর	৩.৩৫	১৬.৩৪	৮০.৩০
পাঁচখোলা	২.৩১	\$6.80	৮২.২৪
পিয়ারপুর	৩.৯৬	\$0.08	b4.00
রাস্তি	৬.৩৮	\$0.80	৮৩.১৬
শিরখাড়া	৩.৯৭	৮.২৮	b9.9b

(Source: Raw data from BBS table no C-14)

Table 2.2.3: Household size ছক ১ ১ ৩: খানার আকার

ইউনিয়ন	খানার আকার		
201141	১-২ জন	৩-৪ জন	৫ জন বা তার বেশী
বাহাদ্রপুর	8,6	৩৮.১৫	৫২.৪৩
চিলার চর	76.94	86.08	৪৩.০৬
ধুরাইল	22.22	৩৫.২৯	৫৩.৫৯
দুদ্খালী	24	80.09	۷≼.88
ঘাটমাঝি	৫.৬৩	৩৭.২১	84.89
জাওদি	৯.৫২	80.08	৫০.৪২
কালিকাপুর	৬.২১৫	৩২.৬৯	७३.०१
কেন্দুয়া	9.36	৩৯.০২	৫১.৮১
খোয়াজপুর	\$0.00	৩৬.৩	৫৩.১১
কুনিয়া	ዓ.৮৫	৩২,২৪	৫৯.৮৯
মোন্তফাপুর	৯.২৫	৩৯.৪৭	৫১.৩১
পাঁচখোলা	20.92	৩৮.৯৬	00.50
পিয়ারপুর	১২.৩২	৩৯.৬৬	89.56
রাস্তি	22.68	8২.১২	8৬.২৫
শিরখাড়া	26.6	৩৯.৯৩	00.50

(Source: Raw data from BBS table no C-03)

Table 2.2.5: Land cover of Madaripur Sadar upazila
চিত্র ২,২,৫: মাদারীপুর সদর উপজেলার ভূমি আচ্ছাদনের ভিন্নতা

ভূমি আচ্ছাদন	সর্বমোট এলাকা (বর্গকি.মি)	
বসতি	१०.১७	
আবাদি জমি	৩৪.৪৯	
পতিত জমি	<i>৬</i> ১.১২	
আদ্র ভূমি	80.69	
পানি	৬৫.৭৮	

গৃহায়ন

গৃহ নির্মাপের উপানাদের উপর ভিত্তি করে বাংগাদেশের বাড়িছলোকে তিনটি শ্রেণিতে ভাগ করা যায়। এছলো হল পাকা, আবাং পাকা এবং কাঁচা ও খুপার মানচিত্রটিতে দুর্বোপ আক্রান্ততা এবং বিপাদপারাতা পরিমাপের জনা বাড়ি নির্মাপের এই শ্রেপিছলোকে বিবেচনা করা হয়েছে। ছক হেও, ২ এ মাদারীপুর সদর উপজেলার পাকা, আধা-পাকা এবং কাঁচা ও ঝুপার বাড়ির শাতকরা হার দেখালো হয়েছে। ছক থেকে দেখা যায় যে, মাদারীপুর সদর উপজেলার অধিকাশে বাড়ি কাঁচা ও ঝুপার। ধুরাইল ইউনিয়নে কাঁচা ও ঝুপার। ধুরাইল ইউনিয়নে কাঁচা ও ঝুপার। ধুরাইল ইউনিয়নে কাঁচা ও ঝুপার বাড়াবাপার উটিনিয়নে বাচা ব

খানাব আকাব

খানা বলতে বোঝায়, আত্মীয় কিংবা অনাত্মীয় সম্পর্কিত একদল মানুষ যারা একই গৃহে বাস করে এবং এক সঙ্গে খাদ্য এহণ করে। ছক ২.২.৩ থেকে মাদারীপুর সদর উপজেলার বিভিন্ন আকারের খানাব শতকরা হাব দেখানো হয়তে।

বিদ্যুৎ সংযোগের ব্যাপ্তি

কোন একটি অঞ্চলে উন্নয়ন এবং অর্থনৈতিক বছেলতার একটি বড় মাপকাঠি হল বিদ্যুৎ সংযোগ। বিদ্যুৎ সংযোগ। বিদ্যুৎ সংযোগের উচ্চ হার এলাকাবাসীর উন্নত জীবনযাত্রার মান নির্দেশ করে। ছক ২.২.৪ মাদারীপুর সদর উপজেলার ইউনিয়ন ভিত্তিক বিদ্যুৎ সংযোগের শতকরা হার নির্দেশ করে। ইউনিয়ন ভিত্তিক বিদ্যুৎ সংযোগের শতকরা হার নির্দেশ করে। ইউনিয়ন ভলোর মাঝে সবচেয়ে বেশী বিদ্যুৎ সংযোগের হার পিয়ারপুর ইউনিয়ন (প্রায় ৮৩%) এবং এই হার সবচেয়ে কম ধরাইল ইউনিয়ন (প্রায় ৬%)

ভমি আচ্ছাদন

ভূমি আছাদন বলতে মূলত কোন নির্দিষ্ট এলাকার ভূমির ভৌত আছাদন কে বোঝায়। যেহেতু

ডুমি আছাদন এবং বাবহারের ধরন উভাই আপন এবং দুর্যোগক্রান্ততার উপাদানগুলাকে
প্রভাবিত করে সেহেতু ভূমি আছাদন আপদ ও বুঁকি নিরূপনের জলা ওরুত্বপূর্ণ। চিত্র ২,২,১ এ

মাদারীপুর সদর উপাজেলার ভূমি আছাদনের ভিনুতা দেখানো হয়েছে। চিত্র এবং ছকে (২,২৩)

কোখা যায় যে, মাদারীপুর সদর উপাজেলার ভূমি আছাদনের ধরনগুলোর মধ্যে সপতির (গ্রায়

২৬%) বিস্তৃতি সবচেয়ে বেশী। এছাড়া পানির পরিমাণ শতকরা ২৪ ভাগ এবং পতিত জমির
পরিমাণ শতকরা ২২ ভাগ। অন্যান্য ভূমি আছাদনের মাঝে আদ্র ভূমি এবং আবাদী জমির শতকরা

বার রখাক্রমে ১০ এবং ১০ ভাগ।

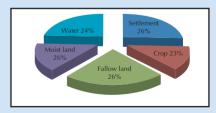


Figure 2.2.1: Land Cover Madaripur Sadar upazila চিত্র ২.২.১: মাদারীপুর সদর উপজেলার ভূমি আচ্ছাদনের ভিন্নতা

Economic Activity

Bangladesh is a country where, a large percentage of population depends on agriculture for their livelihood. There are a small percentage of populations who are involved in other economic activity rather than agriculture. Table 2.2.6 shows the distribution of economic activity in Madaripur Sadar upazila.Likewise Bnagladesh, majority population of Madaripur Sadar upazila is engaged in agricultural activity. The highest percentage of people engage in agriculture sector is found in Dhurall union.

Unemployment Rate

Unmployment rate of Madaripur Sadar is shown in Tabl 2.2.7. The highest percentage of unemployed people is found in Mustafapur union whereas the lowest percentage is seen in Dhurail Union.

Water supply and Sanitation

Water supply and sanitation is a major health indicator for a community. Table 2.2.8 and 2.2.9 shows the existing condition of water supply and sanitation of Madaripur Sadar upazila respectively. Condition of water supply and sanitation of Madaripur Sadar Upazila is shown in table 2.2.8 and 2.2.9. There are varieties of sources of drinking water in the unions of Madaripur Sadar Upazila. Large number of households uses Tubewell as sources of drinking water except tap and other type sources. Peoples of Bahadurpur Union (99.17%) and Sirkhara Union (99.01%) get most of their drinking water from tubewell.People collect drinking water from various sources in this upazila. Majority of the households use tubewell as drinking source rather than tap and other types of sources. The highest percentage of tubewell users are found in Bahadurpur (about 99.17%) and Sirkhara (99.01) union.

The study demonstrates that there aremainly two types of annitation system i.e. sanitary and non-sanitary in Madaripur Sadar upazila. Sanitary toilets can be divided into two types: water sealed and non-water sealed. Table 2.2.9 shows the condition of sanitation in different unions of this upazila. In Madaripur Sadar upazila, the non-water sealed sanitary latrines are more common than the water sealed sanitary latrines. On the other hand, the highest percentage (around 82.26%) of non-sanitary toilets is found in Kalikapur union.

Table 2.2.6: Employment Sector ছক ২.২.৬: কর্মজীবী মানুষের অর্থনৈতিক কর্মকান্ড

ইউনিয়ন	অর্থনৈতিক কর্মকাভ		
হতাশয়শ	কৃষি	শিল্প	চাকুরি
বাহাদ্রপুর	42.2	9.0	२\$.9
চিলার চর	৮৪.৩	٩.২	b.@
ধুরাইল	82.3	۵.۶	6.0
पू प् था नी	৬৫.৯	<i>⊌.</i> د	৩২.৫
ঘাটমাঝি	4.69	₽.€	<i>ۈ.</i> ھذ
জাওদি	po.7	b.8	22.⊍
কালিকাপুর	p.G.2	22.0	७.8
কেন্দুয়া	96.6	6.8	\$8.6
খোয়াজপুর	৮৩.৫	8.9	77.6
কুনিয়া	৬৫.৯	٥.٤	७२.৮
মোস্তফাপুর	৭৩.৫	७.৮	২২.৬
পাঁচখোলা	92.0	৮.৬	8,64
পিয়ারপুর	৬০.০	9.৬	৩২.৪
রাস্তি	৪৯.৬	২২.8	ર૪.૦
শিরখাড়া	93.0	১৬.৭	٩.۵٤

(Source: Raw data from BBS table no c-11)

Table 2.2.7: Unemployment Rate ছক ২.২.৭: বেকারতের হার

ইউনিয়ন	বেকারত্বের হার
বাহাদুরপুর	26.50
চিলার চর	\$9.50
ধুরাইল	১৩.৭৯
पूम्थाली	\$6.95
ঘাটমাঝি	২০.৬৪
জাওদি	28.62
কালিকাপুর	১৬.৮৩
কেন্দুয়া	8ه.دد
খোয়াজপুর	26.79
কুনিয়া	26.90
মোন্তফাপুর	২৭.৫০
পাঁচখোলা	২৩,২২
পিয়ারপুর	২১.০৭
রাস্তি	১৪.৯৩
শিরখাডা	28.80

(Source: Raw data from BBS table no c-10)

Table 2.2.8: Sources of drinking water ছক ২.২.৮: খাবার পানি উৎস সমূহ

ইউনিয়ন	খাবার	খাবার পানির উৎস সমূহ							
২৩/শরণ	টিউবওয়েল (%)	কল (%)	অন্যান্য (%)						
বাহাদুরপুর	१८.हह	0.82	0.85						
চিলার চর	৯৮.২৩	0.00	\$.98						
ধুরাইল	৯৮.৫৮	0.00	2.82						
দুদ্খালী	১৩.৩১	0.60	৩.০৭						
ঘাটমাঝি	৯৭.৯৫	0.30	2.50						
জাওদি	৯৪.৮৬	0.25	8,8						
কালিকাপুর	৯৮.৪৫	0.55	\$.88						
কেন্দুয়া	৯৬.০৫	0.55	৩.৮৪						
খোয়াজপুর	৯৬.৫৯	0.50	৩.২৯						
কুনিয়া	ক৯.১৮	0,২0	০.৬৩						
মোস্তফাপুর	৯৭.৫৬	0.09	২.৩৭						
পাঁচখোলা	১৬.৯১	2.50	5.00						
পিয়ারপুর	৯৫.২০	০.২৬	8.৫৩						
রাস্তি	৯২.৭১	০.০৬	৭.২৩						
শিরখাড়া	40.66	0.25	0.52						

(Source: Raw data from BBS table no c-15)

অর্থনৈতিক কর্মকান্দ

বাংলাদেশের একটি বৈশাল জনগোষ্ঠী জীবিকা অর্জনের জন্য কৃষিকাজের উপর নির্ভরশীল। কৃষি ছাড়া অন্যান্য কাজের সাথে জড়িত লোকের সংখ্যা অনেক কম। ছক ২.২.৬ এ কর্মজীবী মানুষের অর্থনৈতিক কর্মকাজের বিন্যাস দেখানো হয়েছে। ছক অনুযায়ী, মাদারীপুর সদর উপজেলার বেশীর ভাগ মানুষ কৃষিকাজের উপর নির্ভরশীল। কৃষিকেত্রে কাজ করে এমন লোকের সংখ্যা ধুরাইল ইউনিয়নে সবচেয়ে বেশী।

বেকারতের হার

ছক ২.২.৭ এ মাদারীপুর সদর উপজেলার বিভিন্ন ইউনিয়নের বেকারডুের হার দেখানো হরেছে। এর মধ্যে বেকারডুের সর্বোচ্চ হার পাওয়া গেছে মাদারীপুর সদর পৌরসভা এবং সর্বনিদ্ন হার পাওয়া গেছে ধরাইল ইউনিয়নে।

পানি সবববাহ ও প্যঃনিস্কাশন

পানি সরবরাহ ও পয়ঃনিছাশন ব্যবস্থা কোন একটি জনগোষ্ঠীর স্বাস্থ্য সম্পর্কিত গুরুত্বপূর্ণ নির্দেশক। ছক ২.২.৮ ও ২.২.৯ এ মাদারীপুর সদর উপজেলার পানি সরবরাহ ও পয়ঃনিছাশন ব্যবস্থার অবস্থা দেখানো হয়েছে। মাদারীপুর সদর উপজেলার ইউনিয়নগুলোতে পানীয় জলের বিভিন্ন রকম উৎস রয়েছে। অধিকাশে পরিবার নালকুপের পানি ব্যবহার করে থাকে যদিও সেখানে পাইশ স্বাইন ও অন্যান্য উৎস বিদ্যানন। বাহাদুরপুর ইউনিয়ন (৯৯.১৭%) ও শিরখাড়া ইউনিয়ন (৯৯.০১%) এর অধিকাংশ বাসিন্দা নলকপ্র থেকে খাওয়ার পানি সহাই কথাকে গা

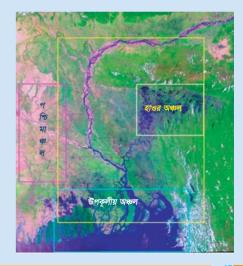
মাদারীপুর সদর উপজেলায় মূলত দুই ধরনের পরঃনিছাশন ব্যবস্থা আছে যেমন স্বাস্থ্যসত্ত এবং অস্বাস্থ্যসন্দত পারধানাকে পানি নিরোধক (সিভ) ও পানি নিরোধক দর এই দুই ভাগে ভাগ করা যায়। তব ২.১.৯ থেকে মাদারীপুর সদর ওপজেলার বিভিন্ন ইনিয়নের পার্যনিছাশন ব্যবস্থার অবস্থা দেখানো হয়েছে। সব ইউনিয়নে পানি নিরোধক স্বাস্থ্যসন্দত পারখানার শতকরা হার পানি নিরোধক দর এমন স্বাস্থ্যসন্দত পারখানার হেয়ে কম। এর মধ্যে কালিকাপুর ইউনিয়নে অস্বাস্থ্যসন্দত পারখানার ত্রয়ে কম। এর মধ্যে কালিকাপুর ইউনিয়নে অস্বাস্থ্যসন্দত্ত পারখানার সভি ১৬ ১৬% স সরবাহে বিশ্বী।

Table 2.2.9: Condition of sanitation facilities

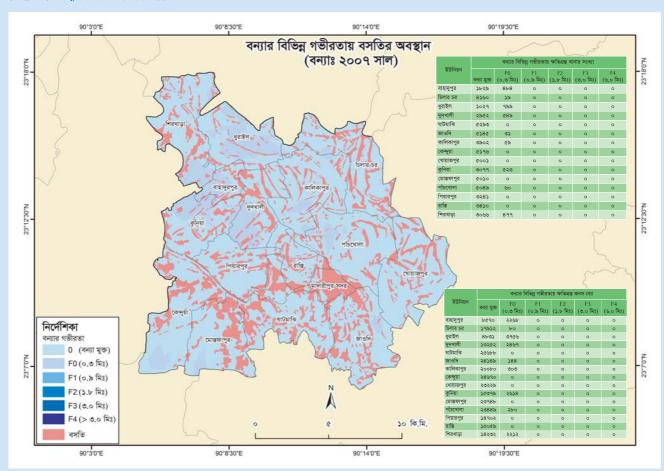
ছক ১ ১ ৯: প্যংনিস্কাশন সবিধাব অবস্থা

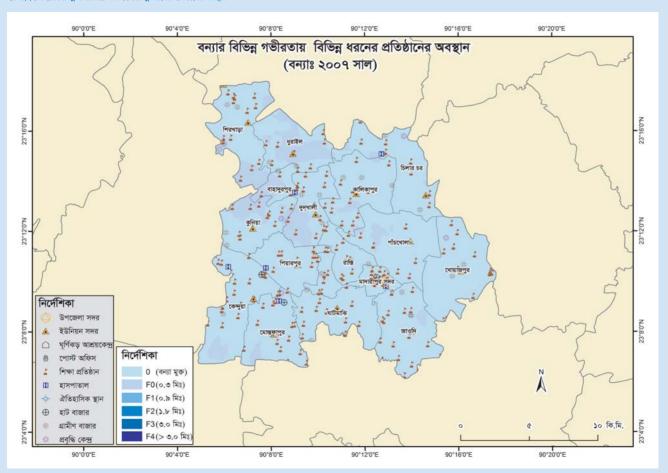
ইউনিয়ন	পয়ঃনিদ্ধাশন ব্যবস্থা									
2011911	স্বাস্থ্যসম্মত (পানি মিরোধক) (%)	স্বাস্থ্য সম্মত (পানি নিরোধক নয়) (%)	অস্বাস্থ্যসম্মত (%)							
বাহাদুরপুর	ર,૦8	b@.\$8	\$2,98							
চিলার চর	۷۹.٥	6,6ব	৮.৬৬							
ধুরাইল	০.৩২	৬৭.৩৬	do.¢o							
দুদ্খালী	8.55	७२.১৫	৩২.৫১							
ঘাটমাঝি	2,20	8.44	৭৮.৬৩							
জাওদি	২.৭২	69.69	۷۹.۵۵							
কালিকাপুর	0.98	১৬.২৭	৮২.২ ৬							
কেন্দুয়া	২,৬১	৩৪.৩২	৬১.৮৯							
খোয়াজপুর	2.02	৮৩.৪৯	১৩.৭৩							
কুনিয়া	2.28	86.07	৫৩.৫৬							
মোস্তফাপুর	8.88	৮৬.৯৭	9.9							
পাঁচখোলা	৩.৯২	৬৮.৭৬	২২.৩৮							
পিয়ারপুর	৩.২১	২৭.২৭	৬৮.৮৫							
রাস্তি	৩.৫২	\$0.0 2	৮০.০৭							
শিরখাড়া	۶۵.۷	62.52	৩৬.৫২							

3 Exposure Analysis

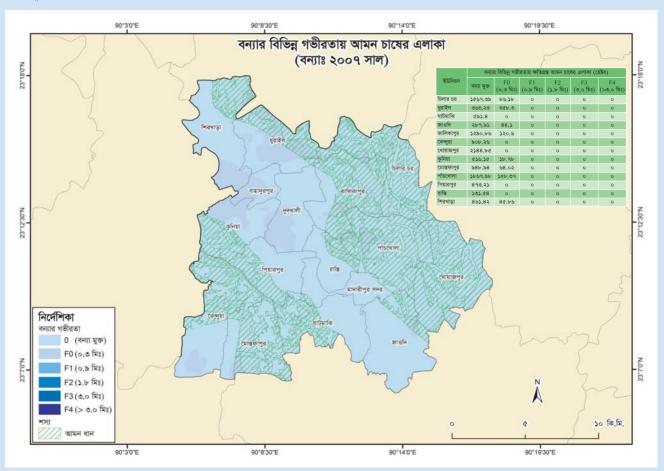

Apart from basic needs of life, communication, social activity and protection are equally important for human being. These social elements are sensitive to the potential damaging capacity of natural or manmade hazards. The damaging mechanisms usually vary according to the nature of hazards. At the same time, sensitivity of elements to a particular hazard varies due to their inherent properties, degrees of hazard intensity and degrees of exposure level. Though Bangladesh is a small country with the minimum topographic variations, there are spatial variations of hazards and exposures.

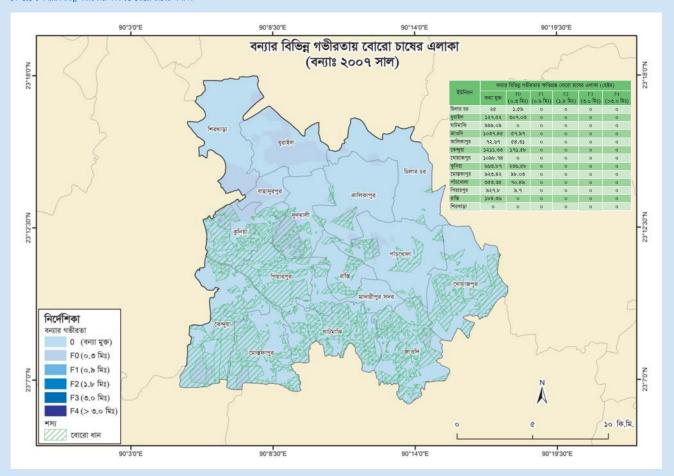
Therefore, in this riverine country flood is a common damaging event, It occurs almost every year and spatially covers almost whole area of the country except Barind Tract and hilly areas. In Bangladesh flood occurs mainly during May to October. It damages severely the Aman crop, houses, roads, ponds and many other things. For instance, the Northeastern hoar basin is a flash flood prone area. As a result, flood occurs in that area due to heavy rainfall during the early monsoon. In most of the cases, flood damages largely the Boro crop in haor areas, However, the Western part including Barind Tract is a drought prone area. This area faces severe problem due to scarcity of water in Boro cultivation during the dry season. Similarly, the Southern coastal part of Bangladesh is sensitive to the storm surge and soil salinity. Therefore, the people of coastal area can grow rice during the monsoon period. On the other hand, the rest of the year they struggle to coop other crops. Although, shrimp farming has introduced a new era of economic development in the coastal areas, recently it has become difficult due to storm surge and high salinity in water. Therefore, it is important to consider the spatial variations of hazards and exposures to analyze the risks.


৩ আক্রান্ততা বিশ্লেষণ


সমাজে বসবাস করার জন্য জীবনের কিছু মৌলিক চাহিদা ছাড়াও সাধারণ মানুষের জন্য যোগাযোগ, সামাজিক কার্যকলাপ এবং নিরাগজাও সমাভাবেে জন্মনি। এই সামাজিক উপাদানগুলো প্রাকৃতিক অথবা মানবসূষ্ট দুর্যোগধারা আক্রান্ত হতে পারে। সাধারণত বিভিন্ন ওবনের দুর্যোগের জতি সাধন করার প্রকৃতি ভিন্ন ভিন্ন হরে থাকে। উপরস্তু, নির্দিষ্ট কোন আপদের প্রতি নির্দিষ্ট কোন আপদের প্রতি নির্দিষ্ট কোন উপাদানের সংবেদনশীলতা নির্ভ্র করে সেই আপদের ভিজ্ঞ বিশিষ্ট্য, তার তীব্রতা এবং মাত্রার উপর। যদিও বাংলাদেশ বৈচিত্রাময় ভূমি নিয়ে একটি ছোট দেশ তথাপি স্থান ভেলে এর আপদ এবং আক্রান্ত হত্তরার সম্ভাবনা ভিন্ন।

নদীমাতৃক এই দেশটিতে বন্যা একটি স্বাভাবিক ক্ষতিকারক ঘটনা। তথুমাত্র বরেম্বর্ভূমি এবং পাহাড়ি অঞ্চল ছাড়া প্রতিবছর পুরো দেশটি বন্যায় আক্রান্ত হয়। বাংলাদেশে প্রধানত মে পাহাড়ি অঞ্চল ছাড়া প্রতিবছর পুরো দেশটি বন্যায় আক্রান্ত হয়। বাংলাদেশে প্রধানত মে পেকে অন্ত্রোরর মানে বনা হয় এবং এই বন্যায় সকচেরে বেদী ক্ষতিগত্ত হয় আমন ধান, বাড়িঘর, রাস্তা-ঘাঁট, পুকুর ইভ্যাদি। উদাহরণস্বরূপ উত্তর-পূর্বে হাওর অববাহিক। একটি আক্রান্তিক নেয়া রাষ্ট্র প্রভাবে বন্যা হয়ে থাকে। আক্রিক গেনুহার কর প্রভাবে হাওর অঞ্চলের বারাে সলল ক্ষতিগ্রন্ত হয়। বন্যাদিকে বরেস্তর্ভূমিসহ দেশের পশ্চিমাঞ্চল একটি খরা প্রথণ অঞ্চল এবং ডফ মৌসুমে পানির অভাবে বারাে চাষ দারুণভাবে ক্ষতিগ্রন্ত হয়। একই ভাবে দেশের দক্ষিণাঞ্চলের উপকূলীয় এলাকা সমূহ জালােছাস এবং লবণাভতা ঘারা আক্রান্ত হয়। ফলে দক্ষিণাঞ্চলের অবিবাসীরা ওধুমাত্র নিয়াইরা বিরির সময় ধান চাষ করে এবং সারা বহুর উৎপাদন করেতে তাদের সমস্যা হয়। যদিও চিঙ্চি চাষ উপকূলীয় অঞ্চল সমূহে নুকুন অর্থনৈতিক দিগত্তের সূচনা করেছে, কিন্তু নিকট অতীতে ভালাাছাস এবং উচ্চ লবণাভতার ফলে চিঙ্চি চাষ করিন হয়ে পড়ছে। অবশেষে বলা যায়ে যে, কুনি পরিমাণের জন্য স্থান ভেদে দুর্মোগ এবং সংবেদনশীলতার মাত্রা বিরেচনা করা অভান্ত ওক্ষত্বপূর্ণ।




ছক ৩.১ ঃ বন্যার বিভিন্ন গভীরতায় ক্ষতিগ্রস্ত খানার সংখ্যা



ছক ৩.৩ ঃ বন্যার বিভিন্ন গভীরতায় ক্ষতিগ্রস্ত আমন চামের এলাকা

ছক ৩.৫ ঃ বন্যার বিভিন্ন গভীরতায় ক্ষতিগ্রস্ত সড়কের দৈর্ঘ্য (কি.মি.)

4 Vulnerability Analysis

Vulnerability is one of the most complicated components of risk assessment because of its nature. Vulnerability refers to the susceptibility of the elements which are exposed to hazard events. In other words, it is a condition or situation in which an element can be prone to loss or damage when it is exposed to any hazard. Depending on the hazard type, vulnerable elements can be different. In this particular study, a holistic approach of vulnerability analysis for all hazard type has been performed.

The vulnerability analysis for this study has been done by using a set of indicators covering physical, social, economic and environmental vulnerability of any hazard. The relative importance of these indicators has been determined by assigning them different weights. It has been also decided on which indicator is suitable for which hazard.

A vulnerability analysis has been performed first by selecting a set of indicators for the aforementioned physical, social, economic and environmental aspect. The data from each indicator has been ranked then by using the formula explained in the methodology section (Section 1.4). After ranking, the each indicator has been given different weight and added to generate broad vulnerability values for the area.

Physical Vulnerability

Physical vulnerability refers to a potential physical impact on elements due to any hazard. Physical vulnerability is defined as the degree of potential loss, to a given element at risk. In this particular study the following sub indicators were used for physical vulnerability analysis.

Physical Vulnerability Results

The results of physical vulnerability analysis are shown in the following maps. Map 4.1.1 shows the vulnerability of density of population. At the same time, map 4.1.2 shows the vulnerability structure type and map 4.1.3 shows the vulnerability of the road network.

Social Vulnerability

Social vulnerability is the inherent condition of the society. It makes the society susceptible to any hazard. It is a social condition which makes them unable to cope with the hazard. The social vulnerability also identifies the community group which needs high level of pre-disaster assistance and monitoring so that they become more capable to adapt with the situation.

8 বিপদাপনুতা বিশ্লেষণ

বিপলাপনুতা তার বৈশিষ্ট্যের কারণে ঝুঁকি পরিমাপের উপাদানগুলোর মধ্যে সবচেয়ে জটিল উপাদান। বিপদাপনুতা হল কোন উপাদানের সংবেদনশীলতা যা কোন আপদে আক্রান্ত। অন্যভাবে, এটি হল এমন একটি অবস্থা যাতে কোন উপাদান যখন আপদে আক্রান্ত হয় তখন এটি কভিত্র সম্মুখীন হতে পারে। আপদের ধরনের উপর নির্ভর করে, বিপলাপনুতার উপাদান বিভিন্ন রকম হতে পারে। এই গবেষগায়, একটি সামগ্রিক বিপদাপন্নতা বিশ্লেমণের পদক্ষেপ নেওয়া হোয়েছ যা সব ধরনের আপদের জন্য প্রযোজ্ঞ হবে।

এই মানচিত্র তৈরীতে যে কোন ধরনের আপদের জন্য বিপদাপন্নতা বিশ্লেষণের জন্য কিছু নির্দিষ্ট সূচক যেমন ভৌত কাঠামো, সামাজিক, অর্থনৈতিক এবং প্রাকৃতিক সূচক বিবেচনা করা হয়েছে। এই সূচকঙলোর আপেকিক গুকত্ব নির্ধারণ করা হয়েছে তাদের কিছু স্বতন্ত্র মান ঘারা। কোন ধরনের সচক গুলো কোন ধরনের আপদের জনা যথাওঁ তান নির্বাব করা হয়েছে।

পূর্বে উদ্লিখিত ভৌত, সামাজিক, অর্থনৈতিক এবং প্রাকৃতিক দৃষ্টি কোন থেকে কিছু সূচক নির্ধারণ করে এই বিপদাপনুতা বিশ্লেষণ করা হয়েছে। প্রতিটি সূচকের তথ্য পরবর্তীতে নির্দিষ্ট ধারাক্রম অনুসারে সাজানো হয়েছে ১.৪ অধ্যায়ের পদ্ধতি ও সূত্র বাবহার করে। যখন প্রতিটি সূচককে মান অনুযায়ী সাজানো হয়েছে তখন তাদেরকে খতন্ত্র মান দেওয়া হয়েছে এবং তা ঐ নির্দিষ্ট এলাকার সামগ্রিক বিপদাপনুতা বিশ্লেষণের জন্য ব্যবহার করা হয়েছে।

ভৌত বিপদাপন্নতা

ভৌত বিপদাপন্নতা হল কোন উপাদানের উপর কোন আপদের সন্ধারা ভৌত প্রভাব। কোন ভৌত উপদান যথন খুঁকিতে থাকে তখন তা কি পরিমাণ ক্ষতির সম্থানীন হতে পারে তাই হল ভৌত বিপদাপন্নতা। এই নির্দিষ্ট গবেষণায় নিমু লিখিত সূচকতলো ভৌত বিপদাপন্নতা বিশ্লেষণের জন্য ব্যবহার করা হয়েছে :

ছক ৪.১ঃ ভৌত বিপদাপনতার নির্দেশক

নির্দেশক	বৰ্ণনা	যৌক্তিকতা							
জনসংখ্যার ঘনত্	বসতি এলাকায় জনসংখ্যার ঘনত্	ঘন বসতি পূর্ণ এলাকায় বেশী সংখ্যক মানুষ আপদে আক্রান্ত হবে। একই সাথে বেশী সংখ্যক কাঠামোও ক্ষতিগ্রন্থ হবে।							
কাঠামোর ধরণ	মোট বাড়ির তুলনায় কাঁচা বাড়ির শতকরা হার	কাঁচা বাড়ির উপস্থিতিকে এলাকার ভৌত দুর্বলতার নির্দেশক হিসেবে ধরা হয়েছে। বেশী সংখ্যক কাঁচা বাড়ির অর্থ এলাকার অর্থনৈতিক অবস্থা দুর্বল ও বেশী লোক দুর্যোগের ঝুঁকিতে আছে।							
সড়ক ব্যবস্থা	কাঁচা রাস্তার শতকরা হার	যদি এলাকার বেশী সংখ্যক রাস্তা কাঁচা হয় তাহলে দুর্যোগের সময় চলাচল ব্যাহত হবে।							

ভৌত বিপদাপনতার ফলাফল

ভৌত বিপদাপন্নতা বিশ্লেষণের ফলাফল নিমু লিখিত মানচিত্রগুলোতে দেখানো হয়েছে। মানচিত্র ৪.১.১ জনসংখ্যা ঘনত্বের বিপদাপন্নতা বর্ণনা করে, একইভাবে মানচিত্র ৪.১.২ ভৌত কাঠামোর বিপদাপন্নতা বর্ণনা করে এবং মানচিত্র ৪.১.৩ সভকের বিপদাপন্নতা বর্ণনা করে।

সামাজিক বিপদাপন্নতা

সামাজিক বিপদাপন্নতা হল কোন সমাজের সহজাত অবস্থা যা তাকে যে কোন ধরনের দুর্যোগের জন্য সংবেদনদীল করে। এটি একটি সামাজিক অবস্থা যা ভাদেরকে যে কোন ধরনের দুর্যোগের সাথে মানিয়ে নিতে অপারণ করে তোলে। সামাজিক বিপদাপদ্বাতা নির্ধারণ সমাজের কোন জনগোষ্ঠীর দুর্বাগের পূর্বে উচ্চ পর্যারের সহযোগিতা প্রয়োজন এবং পর্যবেক্ষণ করে যাকে তারা উদ্ধার্যির সাথে মানিয়ে নিতে পারে।

ছক ৪.২ ঃ সামাজিক বিপদাপনতার নির্দেশক

নিৰ্দেশক	বৰ্ণনা	যৌক্তিকতা
খানার আকার	মোট খানার সংখ্যার ডুলনায় ৪ সদস্যের অধিক সংখ্যক খানার শতকরা হার	খানার সদস্য সংখ্যা যত বেশী হবে দুর্যোগ খাপ খাওয়ানো তত কঠিন হবে। যদি দুর্যোগে পরিবারের আয় ক্ষতিগ্রস্থ হয় তাহলে বড় পরিবারের দেখাশোনা করা কঠিন হয়ে যাবে।
শিশু ও বয়স্ক নির্ভরশীল ব্যক্তি	(৬৫+) নির্ভরশীল ব্যক্তিদের শতকরা হার	শিও ও বৃদ্ধদের দুর্যোগের সময় অপরের সাহয্যের প্রয়োজন হয়। তাই একটি জনগোষ্ঠী ঝুঁকিগ্রন্থ হয়ে পড়ে যদি জনসংখ্যার বড় অংশ হয় শিও ও বৃদ্ধ।
অশিক্ষার হার	জনসংখ্যার মোট অশিক্ষিত ব্যক্তির শতকরা হার	অশিক্ষিত ব্যক্তিরা দুর্যোগের ঝুঁকি সম্পর্কে সচেতন হতে পারে না তাই বেশী বিপদাপন্ন হয়।
গৃহ মালিকানা	মোট বাড়ির সংখ্যার তুলনায় ব্যক্তিগত মালিকানায় নেই এমন বাড়ির সংখ্যা	যাদের নিজস্ব বাড়ি নেই তারা দুর্মোগ বেশী ঝুকিতে থাকে কারণ তারা সামাজিক ও অর্থনৈতিক ভাবে দুর্বল থাকে।

Social Vulnerability Result

The results of social vulnerability analysis are shown in the following maps. Map 4.2.1 depicts the vulnerability based on household size while map 4.2.2 shows the vulnerability based on young dependents. At the same time, map 4.2.3 represents the vulnerability based on elder dependents whereas map 4.2.4 shows the vulnerability based on literacy rate and map 4.2.5 shows the vulnerability based on ownership of houses.

Economic Vulnerability

Economic vulnerability means the potential impact on the economic well-being of the community. The vulnerability refers as the inherent economic situation that makes a particular community vulnerable to any hazard. For example, if agriculture lands are exposed to a hazard, it makes the economic condition of the area vulnerable. To compute economic vulnerability, some direct and some proxy sub indicators has been used. The indicators are listed in the following table (4.3):

Economic Vulnerability Result

The results of economic vulnerability analysis are shown in the following maps. Map 4.3.1 & 4.3.2 shows the vulnerability based on agricultural land. Additionally, map 4.3.3 shows the income diversity and map 4.3.4 shows the vulnerability based on unemployment rate. At the same time map 4.3.5 shows the vulnerability based on electricity coverage.

Environmental Vulnerability

Environmental vulnerability means the degraded environmental condition of a community that makes it vulnerable to any hazard. It is the environment of the surrounding that makes people susceptible to any disaster. Some proxy indicators are used to find out the environmental vulnerability of the community. The indicators are given below:

Environmental Vulnerability Result

The results of environmental vulnerability analysis are shown in the following maps. Map 4.4.1 shows the vulnerability based on water supply while, map 4.4.2 shows the vulnerability based on sanitation.

সামাজিক বিপদাপনুতার ফলাফল

সমাজিক বিপদাপন্নতা বিশ্লেষপের ফলাফল নিম্নুলিখিত মানচিত্রগুলোতে দেখানো হরেছে। মানচিত্র ৪.২.১ খানার আকারের বিপদাপন্নতা বর্ণনা করে। অন্যাদিক মানচিত্র ৪.২.২ অপ্রান্তবয়ন্ত এবং নির্ভরশীলদের (০-৯ বংকার) বিপদাপন্নতা বর্ণনা করে, মানচিত্র ৪.২.৩ বয়ন্ত নির্ভরশীলদের বিপদাপন্নতা বর্ণনা করে, মানচিত্র ৪.২.৪ শিক্তির হার এর বিপদাপনতা বর্ণনা করে এবং মানচিত্র ৪.২.৫ বাভিক্র মালিকদের বিপদাপন্নতা বর্ণনা করে।

অর্থনৈতিক বিপদাপন্নতা

অর্থনৈতিক বিপদাপন্নতা হল কোন সম্প্রদারের সমৃদ্ধির উপর সম্ভাব্য নেতিবাচক প্রভাব। এই বিপদাপন্নতা হল কোন সম্প্রদারের অর্থনীতির সহজাত অবস্থা যা কোন দুর্মোগ ছারা বিপদাপন্ন। উদাহরণ পরুপ, যদি কৃষি জাদ্ধি দুর্মোগ আক্রান্ত হয় তাহলে ঐ এলাকার অর্থনৈতিক অবস্থা বিপদাপন্ন হয়। অর্থনিতিক বিপদাপন্তা গণান করার জনা কিছ একি সচক বাববার করা হয়েছে যা নিয়ের ছকে বর্ধনা করা হয়েছে (৪.১০) করা হয়ে

ছক ৪.৩ ঃ অর্থনৈতিক বিপদাপনতার নির্দেশক

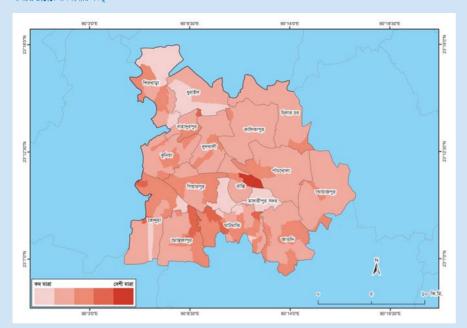
নিৰ্দেশক	বৰ্ণনা	যৌভিকতা
কৃষি জমি	মোট কৃষি জমির শতকরা হারে আমন এবং বোরো জমির অংশ।	মোট ধান চাষের একটি বড় অংশ নির্দিষ্ট কিছু অঞ্চলে হয়ে থাকে। মোট জনসংখ্যার একটি বড় অংশ ধান উৎপাদনের সাথে জড়িত। ফলে এসকল অঞ্চলে কোন দুর্যোগ ঘটলে তা মোট অর্থনীতিতে একটি বিশাল ক্ষতিকারক প্রভাব ফেলবে
জীবিকার বৈচিত্র্য	বৈচিত্র্য সূচকের মাধ্যমে জীবিকার বৈচিত্র্য পরিমাপ করা হয়েছে।	জীবিকার বৈচিত্র্য যত বেশি হবে, যে কোন রকম দুর্যোগে গোষ্ঠীর দুর্যোগ প্রতিরোধ এবং অভিযোজন ক্ষমতা তত বেশী হবে।
বেকারত্বের হার	মোট জনসংখ্যার যে অংশ কোন রকম অর্থনৈতিক কর্মকান্ডের সাথে জড়িত নয় তার শতকরা হার (এ ক্ষেত্রে গৃহস্থালী কাজকর্মকেও অর্থনৈতিক কর্মকান্ডের মধ্যে অন্তর্ভুক্ত করা হয়েছে)।	অর্থনৈতিক সঞ্চলতার এটি একটি প্রতিনিধিত্ব মূলক সূচক। যদি কোন এলাকার কেকারত্বের হার অনেক বেশী হয় তাহলে দুর্যোগ মোকাবেলার ক্ষেত্রে ঐ এলাকার সম্পদ এবং সুযোগ দুটোই কম থাকবে।
বিদ্যুৎ সংযোগ	বিদ্যুৎ সংযোগ নেই এমন খানাগুলোর শতকরা হার।	অর্থনৈতিক স্বচ্ছলতার নিদের্শক হিসেবে এটিও একটি প্রতিনিধিত্ব মূলক সূচক।

অর্থনৈতিক বিপদাপনুতার ফলাফল

অর্থনৈতিক বিপদাপন্নতার বিশ্লেষণের ফলাফল নিমুলিখিত মানচিত্রগুলোতে বর্ণনা করা হয়েছে। মানচিত্র ৪.৩.১ এবং ৪.৩.২ কৃষি জমির বিপদাপন্নতা বর্ণনা করে, মানচিত্র ৪.৩.৩ আয় বৈচিত্রা বর্ণনা করে, মানচিত্র ৪.৩.৪ বেকারত্ব হারের বিপদাপন্নতা বর্ণনা করে এবং মানচিত্র ৪.৩.৫ বৈদ্যুতিক সংযোগের ব্যাপ্তির বিপদাপন্নতা বর্ণনা করে।

পরিবেশগত বিপদাপন্নতা

পরিরেশগত বিপদাপন্নতা হল কোন সম্প্রদারের জন্য অবন্যতি প্রাকৃতিক অবস্থা যারা যে কোন দুর্যোগে বিপদাপন্ন হতে পারে। এটি ঐ এলাকার পারিপার্শ্বিক প্রাকৃতিক অবস্থা যা যে কোন দুর্যোগে ঐ এলাকার জনগণকে সংবেদনশীল করে তোলে। ঐ সম্প্রদায়ের প্রাকৃতিক বিপদাপন্নতা দেখার জন্য নিন্নাপিত প্রস্তি সুকলকলো ব্যবহার করা হয়েছে ঃ


ছক ৪.৪ ঃ পরিবেশগত বিপদাপরতা নির্দেশক

নিৰ্দেশক	বৰ্ণনা	যৌঙিকতা								
পানি সরবরাহ	মোট খানার শতকরা যত ভাগের কোন পানি সরবরাহ ব্যবস্থা নেই।	কোন গোষ্ঠীর পরিবেশত অবস্থা বোঝার জন্য প্রতিনিধিত্মূলক নির্দেশক হিসেবে এটি ব্যবহার করা হয়েছে। নিমুমানের পরিবেশে বসবাসকারী মানুষ যে কোন দুর্যোগের ক্ষেত্রে বেশী বিপদাপন্ন অবস্থায় থাকে।								
পয়ঃনিক্কাশন	মোট খানার শতকরা যত ভাগের স্বাস্থ্য সম্মত পায়খানা নেই।	কোন গোষ্ঠীর পরিবেশত অবস্থা বোঝার জন্য প্রতিনিধিত্মূলক নির্দেশক হিসেবে এটি ব্যবহার করা হয়েছে। নিমুমানের পরিবেশে বসবাসকারী মানুষ যে কোন দুর্যোগের ক্ষেত্রে বেশী বিপদাপন্ন অবস্থায় থাকে।								

পরিবেশগত বিপদাপনুতার ফলাফল

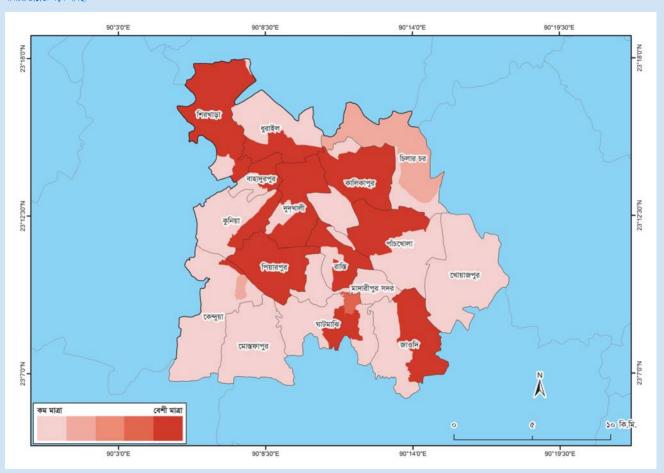
পরিবেশগত বিপদাপন্নতা বিশ্লেষণের ফলাফল নিম্নুলিখিত মানচিত্র গুলোতে দেখানো হয়েছে। মানচিত্র ৪.৪.১ পানি সরবরাহের বিপদাপন্নতা বর্ণনা করে এবং মানচিত্র ৪.৪.২ পয়নিদ্ধাশন ব্যবস্থার বিপদাপন্নতা বর্ণনা করে।

মানচিত্র ৪.১.১: জনসংখ্যার ঘনতু

Analysis of physical vulnerability

It is seen from map 4.1.1 that most of the areas of Madaripur Upazila are moderately vulnerable in terms of population density. Rasti is also noted as the vulnerable union having the comparatively highest population density. Map 4.1.2 represents the physical vulnerability of this upazila based on house type. It is also seen in map 4.1.2 that majority of the unions are vulnerable in Madaripur Sadar upazila, Besides, maximum houses are kutcha in these unions. These kutcha structures increase the physical vulnerability. At the same time, map 4.1.3 shows the physical vulnerability based on road condition of Madaripur SadarUpazila. It is seen in the map 4.1.3 that Sirkhara, Rasti, Ghatmajhi, Pearpur, Kalikapur, Kunia, Bahadurpur, Panchkhola Dudkhali, Dhurail, and Jhaudi Unions are the most vulnerable union of Madaripur Sadar upazila on the basis of poor condition of roads. On the other hand Kendua, Khoaipur and Mustafapur Unions are less vulnerable with better road conditions.

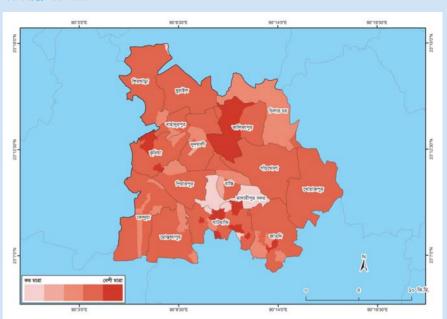
ভৌত বিপদাপন্নতার বিশ্লেষণ


মানচিত্র ৪.১.১ থেকে দেখা যায় যে. মাদারীপুর সদর উপজেলার জনসংখ্যার ঘনতের কারনে বেশীর ভাগ এলাকা মধ্যম মাত্রায় বিপদাপর। এই উপজেলার সবচেয়ে জনবহুল ও বিপদাপনু ইউনিয়ন হচ্ছে রাস্তি। ঘরের ধরনের উপর ভিত্তি করে মাদারীপর সদর উপজেলার ভৌত বিপদাপরতার মানচিত্রটি প্রস্তুত করা হয়েছে। মানচিত্র ৪.১.২ এ দেখা যায় যে উপজেলার বেশীর ভাগ ইউনিয়নই বিপদাপনু। সড়কের অবস্থার উপর ভিত্তি করে প্রস্তুত করা মানচিত্রটি (চিত্রঃ ৪,১,৩) মাদারীপুর সদর উপজেলার ভৌত বিপদাপরতা নির্দেশ করে। মানচিত্র ৪.১.৩ থেকে জানা যায় যে. মাদারীপুর সদর উপজেলার শিরখাড়া, রাস্তি, ঘাটমাঝি, পিয়ারপর, কালিকাপর, কনিয়া, বাহাদুরপুর, পার্চখোলা, দুদখালী, ধুরাইল এবং জাউদি ইউনিয়নের সভকের অবস্থা শোচনীয়, যা কিনা এই উপজেলাকে বিপদাপর করেছে। অপরদিকে কেন্দয়া. মোস্তফাপুর, খোয়াজপুর ইউনিয়নগুলোর রাস্তার অবস্থা তুলনামূলক ভালো যে কারনে এই ইউনিয়নগুলো কম বিপদাপর।

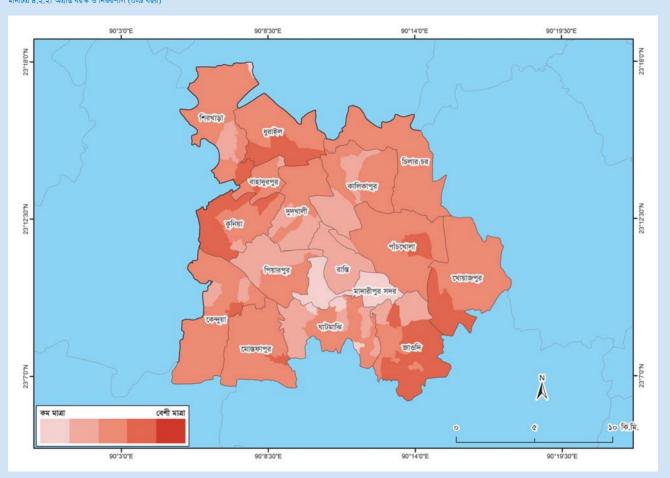
মানচিত্র ৪.১.২: কাঠামোর ধরন

দুর্যোগ ও জলবায়ু পরিবর্তনজনিত ঝুঁকি মানচিত্র ও পরিকল্পনা নির্দেশিকা

মানচিত্র ৪.১.৩: সড়ক ব্যবস্থা

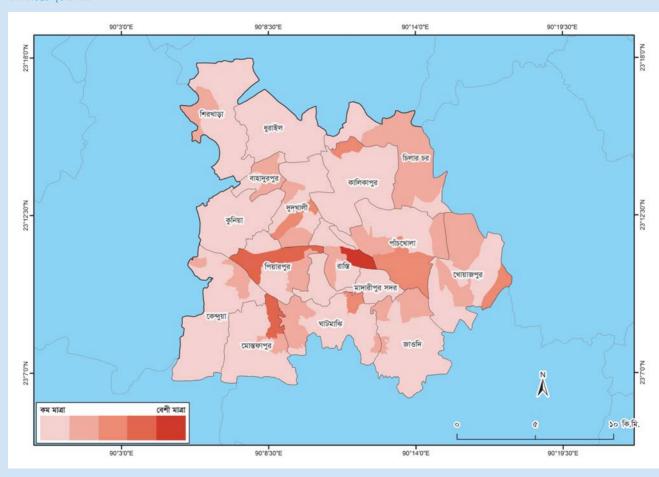

Analysis of social vulnerability

Map 4.2.1 shows that Kalikapur Union has the highest percentage of households having five or more persons. Besides, all the unions are vulnerable in terms of household size. Because of large number of household size these unions are more vulnerable during a natural disaster. Moreover, it is seen from map 4.2.2 and map 4.2.3 that Kunia, Bahadurpur, Panchkhola, Dhurail, Khoajpur, Sirkhara and Jhaudi have the highest percentage of young dependents and Kunia, Dudkhali, Dhurail, Khoajpur, Sirkhara, Chilarchar, Kendua, Ghatmajhi and Jhaudi Unions have the highest percentage of elder dependents. These unions are much vulnerable to a disaster. as most of the households have to take the additional responsibility of providing support to their dependents. Illiteracy rate is also a fundamental indicator of social vulnerability. The higher the illiteracy rate is the higher the extent of vulnerability. Map 4.2.4 shows that Mustafapur union have the highest illiteracy rate which makes these unions more vulnerable to natural disasters. In adition, map 4.2.5 shows that Mustafapur and Rasti unions have the highest percentage of population who do not have their own house. It is assumed that those people who can afford to own a house are more capable of coping with a natural disaster.


সামাজিক বিপদাপন্নতার বিশ্লেষণ

মানচিত্র ৪.২.১ থেকে দেখা যায় যে কালিকাপুর ইউনিয়নের কিছ অংশে পাঁচ বা ততোধিক সদসোর খানার শতকরা হার সবচেয়ে বেশী। এছাডা, অন্য সব ইউনিয়নই খানার সদস্য সংখ্যার দিক থেকে বিপদাপর। প্রাকৃতিক দুর্যোগের সময় এই ইউনিয়নগুলো সবচেয়ে বেশী বিপদাপন অবস্থায় থাকবে কারণ খানায় লোকসংখ্যা যত বেশী হবে তা তত বেশী বিপদের ঝুঁকির মধ্যে থাকবে। মানচিত্র ৪.২.২ ও ৪.২.৩ থেকে দেখা যায় যে. কনিয়া. বাহাদুরপুর, পাঁচখোলা, ধুরাইল, খোয়াজপুর, শিরখাড়া ইউনিয়নে পরনির্ভরশীল অপ্রাপ্ত বয়স্ক জনসংখ্যার হার সবচেয়ে বেশী, এবং কনিয়া, দদখালী, ধরাইল, খোয়াজপর, শিরখাড়া, চিলার চর, কেন্দ্রা, ঘাটমাঝি এবং জাউদি ইউনিয়নে নির্ভরশীল বদ্ধদের শতকরা হার সবচেয়ে বেশী। যেহেত এই ইউনিয়নগুলোতে নির্ভরশীলতার হার সবচেয়ে বেশী সেহেত এই ইউনিয়নগুলো অনেক বেশী বিপদাপন, কারণ দর্যোগের সময় প্রতিটি পরিবারকে অতিরিক্ত মানুষের দায়িত নিতে হয়। সামাজিক বিপদাপনতার একটি বড পরিমাপক হল নিরক্ষতার হার। নিরক্ষতার হার যত বেশী হবে বিপদাপনুতার সম্ভবনা তত বেড়ে যায়। মানচিত্র ৪.২.৪ থেকে দেখা যায় যে. মোন্তফাপর ইউনিয়নে অশিক্ষার হার সবচেয়ে বেশী। ফলে এই ইউনিয়নগুলোর প্রাকৃতিক দর্যোগে বিপদাপরতার সম্ভাবনা অনেক বেশী। মানচিত্র ৪.২.৫ থেকে দেখা যায় যে, মোন্তফাপুর ও রাস্তি ইউনিয়নে প্রচুর লোক বসবাস করে যাদের নিজম্ব কোন বাসা নেই এবং বলা যায় যে এই ইউনিয়নগুলো অনেক বেশী বিপদাপর। এটা নিশ্চিত যে, যে জনগোষ্ঠীর নিজেদের ঘর বানানোর মতো ক্ষমতা আছে প্রাকৃতিক দুর্যোগে তারাই মানিয়ে নিতে পারে।

মানচিত্র ৪.২.১: খানার আকার

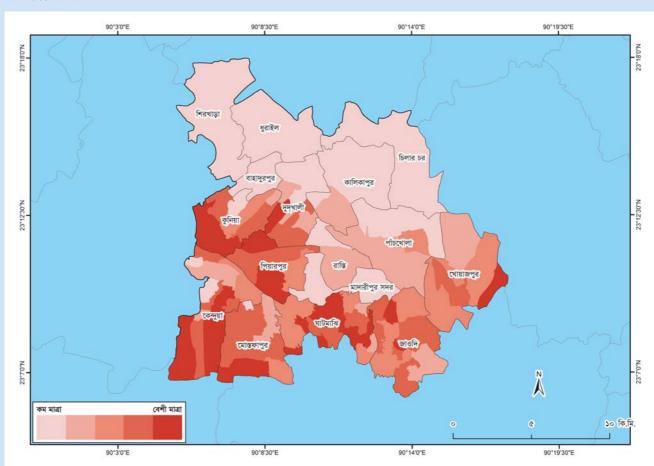


মানচিত্র ৪.২.৩: নির্ভরশীল বয়স্ক ব্যাক্তি (৬৫+ বছর)

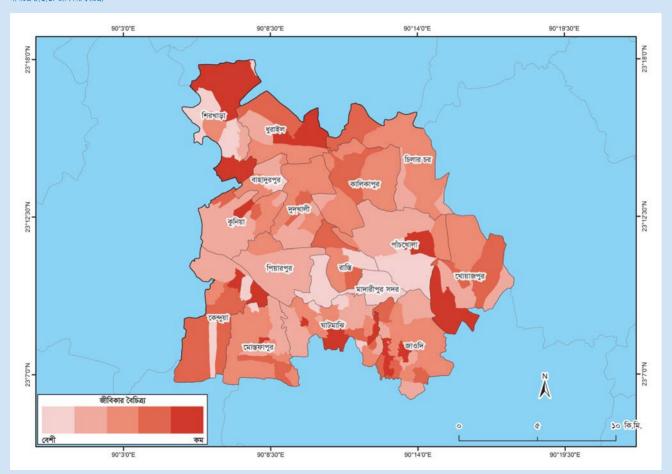
দর্যোগ ও জলবায় পরিবর্তনজনিত ঝঁকি মানচিত্র ও পরিকল্পনা নির্দেশিকা

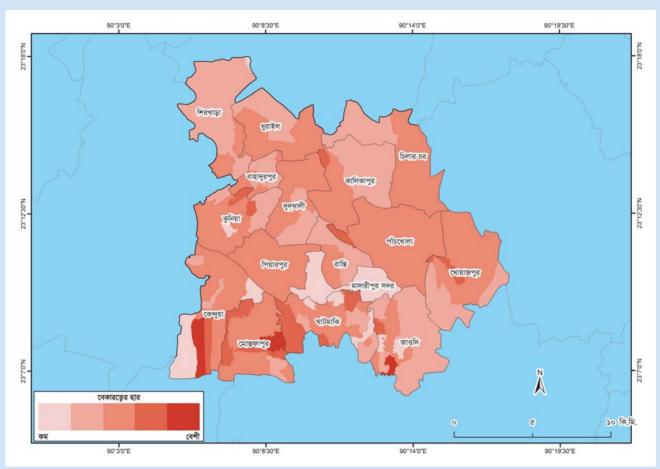
মানচিত্র ৪.২.৫: গৃহ মালিকানা

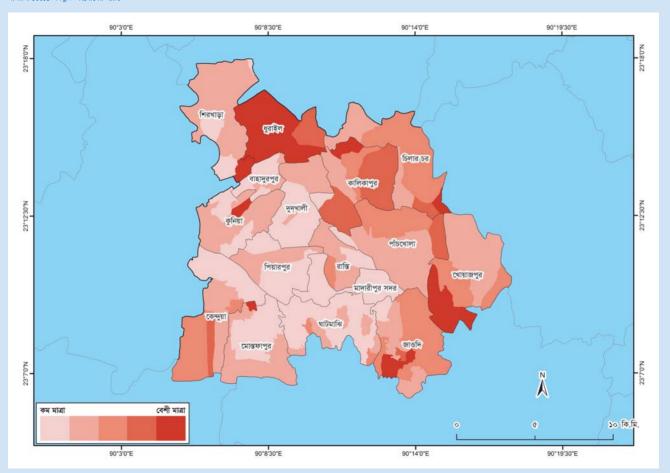
90°14'0"E 30.3.0.E 90'8'30'E 90"19"30"E বোয়াজপুর মানারীপর স বেশী মাত্রা কম মার 90"14"0"E 30,20.E 90'8'30'E 90'19'30'E


Analysis of Economic vulnerability

Majority of the population depends on agriculture for their livelihood in Madaripur Sadar upazila, Among them, a large number of people are engaged in Aman rice cultivation. According to the map 4.3.1, it can be concluded that the economic activity of Aman rice production is very vulnerable in this upazila. In a word, the whole economic activity of Aman production would greatly be affected by hazards. On the other hand, Boro production occupies huge lands (4.3.2). As a result the area possesses high vulnerability in terms of Boro production in the south-west part of the upazila . Communities which depend on single income generating activity are more vulnerable to disasters. It is seen from the map 4.3.3 that Dhurail, Khoaipur, Sirkhara, Panchkhola, Kendua, Ghatmajhi and Jhaudi are the most vulnerable unions of Madaripur Sadar Upazila in terms of income diversity vulnerability. Majority population of those unions depends highly on a single income generating activity which increases their vulnerability. On the other hand, people living in Pearpur Union are the least vulnerable in terms of income diversity vulnerability. Vulnerability relating to unemployment rate indicates that region with high unemployment rate has high vulnerability. From Map 4.3.4 it is seen that Kendua, Mustafapur, Ghatmajhi, Jhaudi, Khoajpur and Panchkhola have the highest unemployment rate as well as the higher vulnerability. From map 4.3.5 it is clear that the most vulnerable unions are Dhurail, Jhaudi, Khoaipur and Kalikapur in terms of access to electricity. Subsequently, Dudkhali, Rasti, Pearpur and Mustafapur are partly vulnerable areas in terms of not having access to electricity.

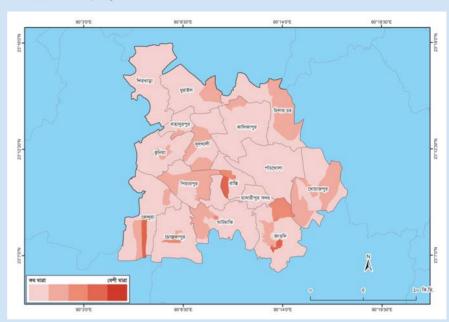

অর্থনৈতিক বিপদাপন্নতার বিশ্লেষণ


মাদারীপুর সদর উপজেলার জনগোষ্ঠীর বেশীরভাগ অংশই জীবিকার জন্য কষির উপর নির্ভরশীল। এই উপজেলার বেশীরভাগ মান্যই আমন ধান উৎপাদনের সাথে কোন না কোনভাবে জডিত। মানচিত্র নং ৪ ৩ ১ থেকে পরিলতি যে এই উপজেলায় আমন ধান উৎপাদনের সাথে জড়িত অর্থনৈতিক কর্মকান্ড অনেক বেশী বিপদাপন । এক কথায় যে কোন ধরনের দর্যোগই আমন ধান উৎপাদনের সঙ্গে সম্পর্কিত অর্থনৈতিক কর্মকান্তকে মারাতকভাবে ক্ষতিগ্রস্ত করতে পারে। এই উপজেলার দক্ষিণ-পশ্চিম অংশ (চিত্রঃ ৪.৩.২) বোরো উৎপাদন এলাকা হওয়ায় যে কোন দর্যোগ দ্বারা ক্ষতিগ্রস্ত হওয়ার সম্ভাবন অনেক বেশী। যে সব জনগোষ্ঠী জীবিকার জন্য একটি পেশার উপর নির্ভরশীল তারা দর্যোগে অপোকত বেশী বিপদাপর। মানচিত্র ৪.৩,৩ অনুযায়ী, মাদারীপুর সদর উপজেলার ধরাইল, খোয়াজপর, শিরখাডা, পাচঁখোলা, কেন্দুয়া, ঘাটমাঝি এবং জাউদি ইউনিয়নসমূহ উপার্জন বৈচিত্রতোয় সবচেয়ে বেশী বিপদাপর । কারণ এই এলাকার জনগোষ্ঠী একটি জীবিকার উপর নির্ভরশীল যা তাদের বিপদাপনুতাকে বাড়িয়ে তোলে। অন্যদিকে, জীবিকার বৈচিত্র্য থাকায় পিয়ারপুর ইউনিয়নের জনগোষ্ঠী অপোকৃত কম বিপদাপর। যে সব এলাকায় বেকারতের হার বেশী সে সব এলাকায় বিপদাপনতাও বেশী। মানচিত্র ৪.৩.৪ এ পরিলতি হয় যে কেন্দ্রা, মোস্তফাপর, ঘাটমাঝি, জাউদি, খোয়াজপুর এবং পার্চখোলা ইউনিয়নের বেকারতের হার বেশী থাকায় বিপদাপনতাও বেশী। মানচিত্র ৪.৩.৫ এ দেখা যাচেছ যে, ধরাইল, জাউদি, খোয়াজপর এবং কালিকাপর ইউনিয়নসমূহে বিদ্যুৎ সংযোগ না থাকায় বিপদাপরতা বেশী। অন্যদিকে দুদখালী, রাস্তি, পিয়ারপুর এবং মোন্তফাপুর ইউনিয়নসমূহে বিদ্যুৎ সংযোগ থাকায় এই ইউনিয়নগুলো আংশিকভাবে বিপদাপর।

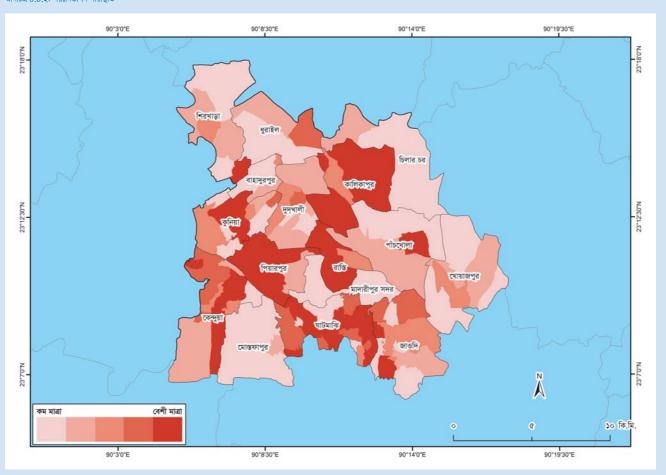


মানচিত্র ৪.৩.২: বোরে ধান উৎপাদন এলাকা

মানচিত্র ৪.৩.৪: বেকারতের হার


Analysis of Environmental vulnerability

Environmental vulnerability of Madaripur upazila has been analyzed on the basis of on water supply and sanitation. Map 4.4.1 shows that Kendua. Rasti and Ihaudi are partially vulnerable due to limited access to drinking water. Rests of the unions are less vulnerable in terms of access to drinking water sources. Sanitation condition is another constituent of environmental vulnerability. Map 4.4.2 shows that some areas of Kendua, Rasti, Ghatmajhi, Pearpur, Kalikapur, Kunia, Bahadurpur, Panchkhola and Jhaudi unions are highly vulnerable in terms of sanitation facilities. Other unions are moderately vulnerable due to lack of access to sanitation facilities. Above all. considering both water supply and sanitation indicators Kendua, Rasti, Ghatmajhi, Pearpur, Kalikapur, Kunia, Bahadurpur, Panchkhola Dudkhali, Dhurail, and Jhaudi are the most environmental vulnerable unions of Madaripur Sadar upazila.


পরিবেশগত বিপদাপনুতার বিশ্লেষণ

পানি সরবরাহ ও পয়ংনিদ্ধাশন পরিস্থিতির উপর নির্ভর করে মাদারীপর সদর উপজেলার পরিবেশগত বিপদাপন্ততা বিশ্লেষণ করা হয়েছে। মানচিত্র ৪.৪.১ থেকে দেখা যাচ্ছে যে কেন্দরা. বাস্কি এবং জাউদি ইউনিয়ন খাবাব পানি সরবরাহের দিক থেকে আংশিকভাবে বিপদাপন। এই উপজেলার অন্য সকল ইউনিয়ন খাবার পানি সরবরাহের দিক থেকে কম মাত্রায় বিপদাপন। পরিবেশগত বিপদাপনতার আরেকটি দিক হচ্ছে পয়ঃনিষ্কাশন পরিস্থিতি। মানচিত্র ৪.৪.২ এ দেখা যাচ্ছে যে কেন্দয়া, রাস্তি, ঘাটমাঝি, পিয়ারপর, কালিকাপুর, কনিয়া, বাহাদুরপুর, পার্টখোলা এবং জাউদি ইউনিয়নের কিছ এলাকা প্যঃনিদ্ধাশন পরিস্থিতির ভিত্তিতে উচ্চ মাত্রায় বিপদাপর। অন্যন্য ইউনিয়নসমূহ পয়ঃনিদ্ধাশন সুবিধার দিক থেকে মাঝারি মাত্রায় বিপদাপর। সর্বোপরি পরিবেশগত বিপদাপরতার দুইটি নির্দেশকের ভিত্তিতে মাদারীপর সদর উপজেলার বেশী বিপদাপর ইউনিয়নগুলো হচ্ছে কেন্দ্রা, রাস্তি, ঘাটমাঝি, পিয়ারপুর, কালিকাপুর, কুনিয়া, বাহাদরপর, পার্টখোলা এবং জাউদি।

মানচিত্র ৪.৪.১: পানি সরবরাহ পরিস্থিতি

মানচিত্র ৪.৪.২: পয়ঃনিক্ষাশন পরিস্থিতি

5 Risk Assessment of **Madaripur Sadar**

Risk assessment as discussed in the methodology section is a combination of hazard, exposure and vulnerability and can be expressed with the help of the following equation:

Risk = Hazard x Exposure x Vulnerability

The extent and level of exposure of different hazards have been discussed in chapter 3 with appropriate illustration while the sector wise vulnerability ranking and analysis are presented in chapter 4. The relative importance of different hazards and the associated vulnerability is not the same for all elements, sectors across the areas. That is why different weight has been given for different sectors wise vulnerability for different hazards. The methodology used to assign the weight and final risk calculation is illustrated in Appendix- 1.

Based on the methodology and steps discussed in chapter 1 and appendix-1 the integrated risk for both baseline (2007) and climate change (2050) scenario of Madaripur Sadar Upazila is portrayed in table 5.1 and 5.2. The final risk calculation value has been classified into 6 (six) different categories and the values are ranked accordingly. The rank ranges from no risk to very high risk and the information is presented for individual hazards and as integratedrisk for all hazards.

Table 5.1 (Baseline Scenario) shows that 5 out of the 15 unions in the upazilaare in the high risk zone when we consider the integrated risk. The most prominent factor behind this risk status is the impact of flood for which the risk factor is high. In the 5 (five) high risk upazila (Chiller Char, Dudkhali, Kendua, Mostafapur, Piarpur) all the other hazard risk apart from flood is in the no risk category. The main reason for that is that these hazards do not exist in Madaripur Sadar Upazila. The overall vulnerability of some sectors is also high in the upazila. For example, the percentage of unpaved roads is high in those unions which contribute to the overall high risk. In addition to the above criteria, social vulnerability particularly percentage of dependent population and illiteracy rate, economic vulnerability like high percentage of crop fields, lack of diverse occupation, unemployment rate and lack of electricity coverage and environmental vulnerability like lack of drinking water and improper sanitation contributes to the overall risk.

Table 5.2 depicts the projected individual and integrated risk in climate change scenario (2050). The projected risk is ranked as high in Ghatmajhi and Piarpur Unions. The reason behind this that the future projected flood hazard intensity will be high in the two unions. The remaining unions are projected to be ranked under medium and low risk category

🕻 মাদারীপুর সদর এর ঝুঁকি মুল্যায়ন

কোন এলাকার সমন্বিত ঝঁকি মল্যায়ন বলতে ঐ এলাকার দর্যোগ দর্যোগাক্রান্ততা এবং বিপদাপনতার সমন্বিত অবস্থাকে বঝায় যা এই কাজের কর্ম পদ্ধতিতে বর্ণিত হয়েছে এবং নিয়োক সমীকরণের মাধ্যমে প্রকাশ করা হয়েছে।

ঝঁকি = আপদ x দর্যোগাক্রান্ততা x বিপদাপন্ততা

বিভিন্ন দর্যোগের দর্যোগাক্রান্ততার ব্যাপ্তি এবং মাত্রা উপযক্ত উদাহরণসহকারে ততীয় অধ্যায়ে আলোচনা করা হয়েছে। চতর্থ অধ্যায়ে সেম্বর ভিত্তিক বিপদাপন্রতাকে ক্রমানুসারে সাজানো হয়েছে এবং বিস্তারিত আলোচনা করা হয়েছে। বিভিন্ন দর্যোগ এবং এর সাথে যক্ত বিপদাপনুতার আপেক্ষিক গুরুত সকল উপাদানের জন্য এবং সকল ক্ষেত্রে এক নয়। সেজন্য বিভিন দর্যোগের জন্য সেইর ভিত্তিক বিভিন বিপদাপনতার জন্য বিভিন মান (Weight) দেয়া হয়েছে। যে কর্ম পদ্ধতির উপর ভিত্তি করে মান ধার্য্য করা হয়েছে এবং চডান্ত ঝঁকি মল্যায়ন করা হয়েছে তা পরিশিষ্ট-১ এ দেয়া

প্রথম অধ্যায় এবং পরিশিষ্ট-১ এ বর্ণিত কর্ম পদ্ধতি অনুসারে মাদারীপুর সদর উপজেলার সমন্বিত বুঁকির ভিত্তি দশ্যপট (২০০৭ সালের জন্য) এবং জলবায় পরিবর্তন দশাপট (২০৫০ সালের জনা) টেবিল ৫.১ এবং ৫.২ এ উপস্থাপন করা হয়েছে। নির্ণিত চডান্ত বঁকির মানগুলোকে ছয়টি বিভিন শ্রেণিতে ভাগ করা হয়েছে এবং মানের ক্রমানসারে সাজানো হয়েছে। শ্রেণি ভিত্তিক ঝঁকির মানগুলোকে 'ঝঁকিমক্ত' থেকে 'অতি উচ্চ মাত্রার ঝঁকি' এই ক্রমানুসারে সাজানো হয়েছে এবং পৃথক পৃথক আপদ ও সমন্বিত ঝুঁকির জন্য উপস্থাপন করা হয়েছে।

প্রথম টেবিল ৫.১ এ প্রদন্ত ভিত্তি দশ্যপটের সমন্বিত ঝুঁকি থেকে দেখা যায় অত্র উপজেলার ১৫ ইউনিয়নের মধ্যে ৫টি 'উচ্চ ঝুঁকি' এলাকাভুক্ত। এই 'উচ্চে ঝুঁকি'র জন্য বন্যার প্রভাবকে অন্যতম কারণ হিসেবে ধরা হচ্ছে। এই ৫টি ইউনিয়ন (চিলার চর, দুদখালী, কেন্দুয়া, মোক্তফাপুর এবং পিয়ারপুর) বন্যা ছাডা অন্যান্য দুর্যোগ জনিত রাঁকি মুক্ত। মাদারীপুর সদর উপজেলাতে অন্যান্য দুর্যোগ অনুপস্থিত, যদিও কিছ কিছ ক্ষেত্র বিপদাপনতা অতান্ত বেশী। উদাহরণ স্বরূপ কাঁচা রাস্তার শতকরা পরিমাণ বেশী থাকায় ইউনিয়নগুলো সার্বিকভাবে উচ্চ ঝঁকি যক্ত। উপরোলিখিত নির্ণায়কগুলো ছাড়াও এত্দসঙ্গে সামাজিক বিপদাপুনতা, অর্থনৈতিক বিপদাপুনতা এবং পরিবেশগত বিপদাপুনতার বিভিন্ন উপাদান যেমন- নির্ভরশীল জনগোষ্ঠীর হার, কৃষি জমির ব্যান্তি, অশিক্ষার হার, জীবিকার বৈচিত্র্যের অভাব, বেকারত্ত্বের হার, অপ্রতুল বিদ্যুৎ সংযেগের ব্যান্তি, খাবার পানির অভাব এবং অস্বাস্থ্যকর পয়ঃনিদ্ধাশন ব্যবস্থা সামগ্রিক বঁকি বন্ধ্রিতে ভমিকা রাখে।

দ্বিতীয় টেবিল ৫.২ এ জলবায়ু পরিবর্তন দৃশ্যপটের (২০৫০ সালের জন্য) একক এবং সমন্বিত ঝুঁকি দেখানো হয়েছে। ঘাটমাঝি এবং পিয়ারপুর ইউনিয়নে সমন্বিত ঝঁকি উচ্চ ঝঁকি শ্রেণি ভক্ত। এই দুই ইউনিয়নে বন্যার তীব্রতা বেড়ে যাবে যাসমন্বিত উচ্চ ঝঁকির কারণ। অন্যান্য ইউনিয়নগুলোতে ২০৫০ এর জন্য সমন্বিত ঝঁকি মধ্যম মাত্রার।

Table 5.1-Union wise Multihazard Risk (Baseline Scenario, 2007) ছক ৫.১: ইউনিয়ন অনুযায়ী ঝুঁকির মাত্রা (দৃশ্যপটঃ ভিত্তিবছর ২০০৭)

ইউনিয়ন	বন্যার ঝুঁকি	ঝড় ও জলোচ্ছ্বাসের ঝুঁকি	লবণাক্ততার ঝুঁকি	খরার ঝুঁকি	সমন্বিত ঝুঁকি
বাহাদুপুর	VL	N	N	N	VL
চিলার চর	H	N	N	N	H
ধুরাইল	M	N	N	N	M
দুদ্খালী	Н	N	N	N	Н
ঘাটমাঝি	L	N	N	N	L
জাওদি	L	N	N	N	L
কালিকাপুর	L	N	N	N	L
কেন্দুয়া	H	N	N	N	H
খোয়াজপুর	L	N	N	N	L
কুনিয়া	M	N	N	N	M
মোস্তফাপুর	H	N	N	N	H
পাঁচখোলা	L	N	N	N	L
পিয়ারপুর	H	N	N	N	H
রাস্তি	L	N	N	N	L
শিরখাড়া	M	N	N	N	M

বিঃ দ্রঃ N-ঝুঁকি মুক্ত, VL-খুব কম ঝুঁকি, L- কম ঝুঁকি, M-মাঝারি ঝুঁকি, H-উচ্চ মাত্রার ঝুঁকি, VH-অতি উচ্চ মাত্রার ঝুঁকি

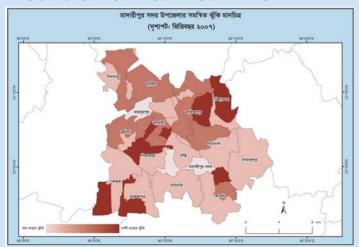
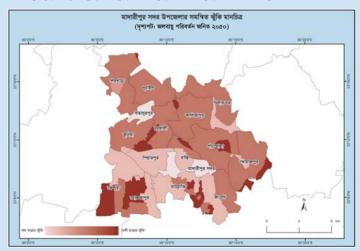



Table 5.2-Union wise Multihazard Risk (Climate Change Scenario, 2050) ছক ৫.২: ইউনিয়ন অনুযায়ী ঝুঁকির মাত্রা (দশ্যপটঃ জলবায়ু পরিবর্তন জনিত ২০৫০)

ইউনিয়ন	বন্যার ঝুঁকি	ঝড় ও জলোচছ্বাসের ঝুঁকি	লবণাক্ততার ঝুঁকি	খরার ঝুঁকি	সমন্বিত ঝুঁকি
বাহাদুপুর	VL	N	N	N	VL
চিলার চর	M	N	N	N	M
ধুরাইল	M	N	N	N	M
দুদ্খালী	M	N	N	N	M
ঘাটমাঝি	H	N	N	N	H
জাওদি	L	N	N	N	L
কালিকাপুর	L	N	N	N	L
কেন্দুয়া	M	N	N	N	M
খোয়াজপুর	L	N	N	N	L
কুনিয়া	M	N	N	N	M
মোস্তফাপুর	M	N	N	N	M
পাঁচখোলা	L	N	N	N	L
পিয়ারপুর	H	N	N	N	H
রাস্তি	L	N	N	N	L
শিরখাড়া	M	N	N	N	M

বিঃ দ্রঃ N-বুঁকি মুক্ত, VL-খুব কম ঝুঁকি, L- কম ঝুঁকি, M-মাঝারি ঝুঁকি, H-উচ্চ মাত্রার ঝুঁকি, VH-অতি উচ্চ মাত্রার ঝুঁকি

6 Conclusion

Though the Atlas is prepared out through a rigorous technical and analytical process, there are few limitations too. The analysis for this atlas was carried out on a sub-national scale. The resulting hazard, exposure, vulnerability and risk maps are meant to provide a general overview at the level of administrative units, which is upazila level.

Moreover, vulnerability is not a static phenomenon. Primarily, it depends on hazard frequency and magnitude. In this respect constructing a dynamic vulnerability function is a prerequisite for holistic risk assessment. However, due to time, material and resource constraints, the study team adopted indicators based static vulnerability assessment. The team has used secondarily available data sources. Demographic and physical setting data available from the Bangladesh Bureau of Statistics was used for evaluating the vulnerability indicators. It should also be mentioned that the data for various parameters is very incomplete in upazila level.

In addition, ideal state suggests that the integrated risk should be evaluated in terms of probable loss and damage. However, assessing the loss and damage is no more possible until and unless the country maintains a historical database. The team of this project has collected as much historical data as possible on natural hazard events in the past. It is found very difficult to persuade various national organizations efficiently to digitize their own historical archives. Moreover, a large part of this database is poorly maintained. Because of the relative scarcity of this historical data, it has been very difficult to analyze the magnitude-frequency relationship for most of the hazard categories. In this respect, the client has made hazard data from secondary sources. Monsoon flood, storm surge, salinity and drought modeling data were generated by the Institute of Water

🕓 উপসংহার

ঝুঁকি মানচিত্রটি যথা সম্ভব কারিগারি নিয়মাবলি ঠিক রেখে বিশ্লেষণাত্মক পদ্ধতি অবলম্বন করে তৈরি করা হয়েছে। মানচিত্রটি ভালভাবে পড়লে যে কেউ কিছু সীমাবদ্ধতা সনাক্ত করতে সক্ষম হবেন। মানচিত্রটির জন্য স্থানীয় পর্যায়ের তথ্য ও উপান্ত ব্যবহার করা হয়েছে। ফলে আপদ, দুর্যোগাক্রান্ততা, বিপদাপন্যতা এবং ঝুঁকি মানচিত্রগুলো থেকে উপজেলা পর্যায়ের সাধারণ ধারণা পাওয়া যাবে।

বিপদাপনুতা কোন স্থিতিশীল ঘটনা নয়, প্রাথমিকভাবে এটি আপদের পৌনঃপৌনিকতা এবং তীব্রভার উপর নির্ভর করে। ফলে সামগ্রিক ঝুঁকি নিরপণের জন্য একটি কার্যকরী মানচিত্র অত্যন্ত প্রয়োজনীয়। কিন্তু সীমিত সময় এবং সম্পদের কারণে প্রাথমিক তথ্য উপান্তের পরিবর্তে অন্যান্য গবেষণা থেকে প্রাপ্ত তথা ও উপান্ত ব্যবহার করে গবেষণাটি পরিচালনা করা হয়েছে। বাংলাদেশ পরিসংখ্যান রারো থেকে প্রাপ্ত জনসংখ্যা ও কাঠামোগত অবস্থানের উপান্ত প্রবহার করে বিপদাপনুতা পরিমাপের সূচকগুলো তৈরি করা হয়েছে। এখানে উল্লেখ্য যে, ভিন্ন ভিন্ন উপাদানের ভিন্ন ভিন্ন সচকের উপান্তথলো সম্পর্ণ নয়।

ঝুঁকি পরিমাপের আদর্শ পদ্ধতি হল সম্ভাব্য ক্ষয়-ক্ষতি এবং লোকসানের ওপর ভিত্তি করে পরিমাপ করা। কিন্তু যতক্ষণ পর্যন্ত না বাংলাদেশ দুর্যোগের ক্ষয়-ক্ষতি সম্পর্কিত একটি তথ্য ভাভার তৈরি না হবে ততক্ষণ পর্যন্ত এটি সম্ভব হবে না। এই প্রকল্পের গবেষক দলটি সর্বোচ্চ চেষ্টা করেছেন তথ্য-উপাত্ত সংগ্রহ করেতে। বিভিন্ন জাতীয় সংস্থাতলোর তথা ভাভার আধুনিকায়ন করা হয়নি এবং সংস্থাতলোর একটি বৃহৎ অংশই তানের তথ্যভাভার সঠিকভাবে রক্ষণাবেক্ষণ করে না। যার ফলে বিভিন্ন ধরনের উপাত্ত গুলোর পৌনিরগৌনিকতা এবং তীব্রতার ভাজসম্পর্ক বিশ্লেষণ করা অত্যন্ত কঠিন হয়ে পড়ে। বিভিন্ন আপদ যেমন: জলোজ্বাস, লবণাজতা, খরা, ইত্যাদি সম্পর্কিত উপাত্ত এর উৎস যথা: Institute of Water Modeling (IWM) Ges Centre for Environmental and Geographic Information Services (CEGIS) থেকে নিয়ে বাবহার করা হয়েছে।

Appendix-1: Risk Assessment Methodology

Risk assessment is a combination of different hazard, the related vulnerability and the level of exposure of the element at risk. As discussed in the methodology section, the risk assessment was performed by using the following formula:

Risk= Hazard X Exposure X Vulnerability

Risk assessment in this study is calculated in two ways. First, the sector wise risk is calculated for physical, social, economic and environmental sector and second, hazard wise risk is calculated for flood, storm surge, soil salinity and drought. In the end, integrated risk is calculated for all hazards and all sectors and displayed in the combined risk map.

The previous chapter on exposure and vulnerability analysis outlined the elements at risk and the vulnerability of those elements (calculated using a set of indicators). But the vulnerability for each hazard is different. Also, the relative value of different vulnerability sector is different. In order to provide weight to this vulnerability sectors and hazard wise risk, an expert consultation is performed. They were asked to weigh the relative importance of sector wise and hazard wise risk. The result of the expert consultation and the relative weight calculation is summarized in table. The final output for sector wise risk, hazard wise risk and integrated risk is displayed in a combined map layout which is the final risk result for the study area. The relative risk ranking for all the upions of the upazilia is shown in the table in the final map layout.

Based on this table all the sub indicators were given separate weights for each different hazard. Then the sector wise risk is calculated by giving the sector wise weight. Finally, the combined risk map is produced by using the weight created for all sectors and all hazards. For example, to calculate flood risk the three indicators for physical vulnerability were given weight of 0.33, 0.33 and 0.34 respectively. Besides, the five indicators for social vulnerability were given weight of 0.20, 0.25, 0.21, 0.18, and 0.17 respectively and so on. After that the combined physical, social, economic and environmental risk for flood is calculated by giving weight of 0.22, 0.34, 0.28 and 0.16. The same way sector wise risk for storm surge, salinity and drought is calculated. Finally, an integrated risk is calculated for all hazards by giving weight 0.17, 0.34, 0.32 and 0.16 for total physical, social, economic and environmental risk respectively.

The risk is calculated based on two scenarios. One is the baseline scenario for year 2007 and the other being climate change scenario for the year 2050. The hazard map from climate change scenario of 2050 is obtained from the same sources as the baseline maps. In order to generate the final risk, it was considered each hazard will have a set level of probability. The estimated return period for all hazards is summarized in table.

Table: Relative weight of risk

চক, বাঁকিব আপেফিক মান

পরিশিষ্ট-১: ঝুঁকি মূল্যায়ন পদ্ধতি

একটি অঞ্চলের ঝুঁকি মূল্যায়ন হচ্ছে সকল দুর্বোগ, তার সঙ্গে সংশ্লিষ্ট বিপদাপনুতা এবং যে সকল উপাদান ঝুঁকির আওতাভুক্ত সে সব কিছুর সমন্বয়। এই কাজের কর্মপন্ধতিতে বর্ণিত নিয়োক্ত সমীকরণের মাধ্যমে ঝুঁকি পরিমাপ করা হয়েছে।

ঝুঁকি = দুর্যোগ x দুর্যোগাক্রান্ততা x বিপদাপনুতা

এই গবেষণায় দুইটি পদ্ধতিতে বুঁকি মুল্যায়ন করা হয়েছে। প্রথমত ভৌত, সামাজিক, অর্থনৈতিক ও পরিবেশণত দিক থেকে অর্থাৎ ক্ষেত্রতিতিক এবং নিতীয়ত বন্যা, জলোচ্ছাস, লবণাজতা ও ধরা অর্থাৎ দুর্যোগ ভিত্তিক। সর্বশেষে, সকল বুঁকি ও ক্ষেত্রের জন্যে একটি সামগ্রিক বুঁকি মানচিত্র প্রদর্শন করা হয়েছে।

পূৰ্ববৰ্তী বিপদাপনুতা ও দুৰ্যোগাক্তান্ততা অধ্যায়ে, ঝুঁকির আওতাভুক্ত উপাদান এবং তাদের সম্পর্কিত বিপদাপনুতা সম্বন্ধে বিস্তারিত আলোচনা করা হয়েছে। কিন্তু প্রতিটি দুর্যোগের জনা বিপদাপনুতা ভিন্ন রকমের। বিভিন্ন ক্ষেত্রের আপেন্ধিক গুরুত্বত ভিন্ন রকমের। এজনা প্রতিটি সূচক, দুর্যোগ এবং ক্ষেত্রকে মান দেবার জন্য কিছু বিশেষজ্ঞের পরামর্শ এহণ করা হয়েছে। এ বিষয়ে অভিজ্ঞ ব্যক্তিদেরকে বিভিন্ন দুর্যোক প্রদাপনুতার সূচককে মান দিতেও অনরোধ করা হয় এবং তাদের মলায়নের উপর ভিক্তি করে আপেন্ধিক মান এর ফলাফল ছাকে কেখালো হয়েছে।

এই গবেষণায় ঝুঁকি দুই পরিস্থিতির উপর ভিত্তি করে নিরপণ করা হয়েছে। একটি হল ভিত্তি বছরের দৃশাপট (২০০৭ সালের জন্য) এবং অন্যটি হল জলবায়ু পরিবর্তন দৃশাপট (২০৫০ সালের জন্য)। সমন্তিত ঝুঁকি নিরূপণের জন্য এটা ধরে নেওয়া হয়েছে যে দুর্যোগ সংঘটিত হবার একটি সম্ভাবনা সূত্রক থাকনে। ছাকে দুর্যাগের বিবরণ কালের একটি চিত্র ভূলে ধরা হল।

Table: Return period of hazard (Baseline and CC Scenario) ছক: ভিত্তিবছর এবং জলবায় পরিবর্তনের ভিত্তিতে আপদের পনরাবত্তি

আপদ	ভিত্তি সাল (২০০৭)	জলবায়ু পরিবর্তন (২০৫০)
বন্যা	৩০ বছর পর ঘটে	১৫ বছর পরঘটে
ঝড়	২০ বছর পর ঘটে	১০ বছর পর ঘটে
লবণাক্ততা	২০ বছর পর ঘটে	১০ বছর পর ঘটে
খরা	৫ বছর পর ঘটে	২.৫ বছর পর ঘটে

हराः साराज आध्यास्य	414																	
	Physical vulnerability				Social vulnerability				Economical vulnerability					Env	Environmental vulnerability			
Hazard Type	Density	House type	Road Network	Total Physical	Household Size	Young dependents	Elder dependents	Illiteracy rate	House ownership	Total Social	Agricultural Land	Unemploym ent rate	Income Diversity	Electricity Coverage	Total Economical	Water Supply	Sanitation	Total Environmental
								Expert Rank	ing (Average)								•	
Flood	7.14	7.14	7.43		6.57	8.00	6.86	5.71	5.43		8.29	6.86	6.29	6.00		8.00	7.43	
Storm Surge	6.86	8.00	8.29		6.86	7.71	8.00	5.71	7.14		8.57	8.00	7.14	6.57		9.14	8.29	
Salinity	5.71	2.29	2.29		4.29	4.57	4.00	3.71	3.71		8.29	5.43	6.00	2.29		8.86	4.00	
Drought	0.00	0.00	0.00		4.29	4.57	4.29	3.43	3.14		8.57	5.71	5.71	2.57		2.43	4.00	
								Individu	ial Weight						·	,		
Flood	0.33	0.33	0.34	0.22	0.20	0.25	0.21	0.18	0.17	0.34	0.30	0.25	0.23	0.22	0.28	0.52	0.48	0.16
Storm Surge	0.30	0.35	0.36	0.22	0.19	0.22	0.23	0.16	0.20	0.33	0.28	0.26	0.24	0.22	0.28	0.52	0.48	0.16
Salinity	0.56	0.22	0.22	0.16	0.21	0.23	0.20	0.18	0.18	0.31	0.38	0.25	0.27	0.10	0.34	0.69	0.31	0.20
Drought	0.00	0.00	0.00	0.00	0.22	0.23	0.22	0.17	0.16	0.40	0.38	0.25	0.25	0.11	0.46	0.38	0.62	0.13
								Intergat	ed Weight						1	•		
Multihazard Multi vulnerability		0.	17			0.34			0.32					0.16				

The Atlas provides general information about the current and future risk profile of the ten Upazilas of Bangladesh (e.g. Amtali, Companiganj, Sarankhola, Gangachara, Kazipur, Langadu, Madaripur, Nachole, Shyamnagar, and Tahirpur), resulting from climate change induced natural hazards. Moreover, it also covered a brief description of the exposed elements at risk (e.g. Aman, Boro, settlement, road), along with different types of vulnerability (physical, social, environmental, economic). The Atlas aims at addressing the first components in the disaster management cycle, i.e., the disaster risk assessment for ensuring climate resilience and sustainable development considerations in a vulnerable country like Bangladesh. Therefore, the main goal of developing this Atlas is to facilitate the local government authority with easy, accessible and credible information and as a reference for local level risk reduction and adaptation planning in this country. This Atlas will also assist the local inhabitants and autonomous development initiatives providing the information about bio-physical and demographic information about the locality. At the same time, it will support government institutions to improve the existing disaster risk management and reduction policies, to develop an appropriate strategy of effective planning, and to implement different development projects efficiently. As a result, any interested person or institution will have the opportunity to evaluate the risks and relevant challenges faced by the local communities of ten Upazilas by utilizing the information exhibited in this Atlas.

ৰুধি মানচিত্ৰটি বাংলাদেশের দশটি উপজেলার (আমতলী, কোম্পানীগঞ্জ, শরণখোলা, গদাচড়া, কাজিপুর, মাদারীপুর
সদর, লক্ষ্যে, নাচোলা, শামনগর এবং তাবিংসুর) জলবায়ু পরিবর্তনের ফলে সৃষ্ট প্রাকৃতিক আপদ জনিত বর্তমান এবং
কবিষাং বৃঁকি সম্পর্কিত সাধারণ তথ্য প্রদান করে। এছাড়াও মানচিত্রটি উপজেলাঙলোর বৃঁকি প্রবণ উপাদান (বেমনঃ
আমন, রোরা, বর্সার্ভ, রাজা-মাটা) এবং বিভিন্ন ধরনের বিপদাপুরতা (কাঠামোগত, সামাজিক পরিবেশগত, অর্থনৈতিক)
সম্পর্কেও আলোচনা করে। বৃঁকি মানচিত্রটির বঞ্চান উল্লেখন মত দেশের কেঁসাই উন্নয়নের জন্য দুর্বাগিকর বৃঁকি
করেপশে সহায়তা করা। বৃঁকি মানচিত্রটির রথান উদ্দেশ্য হলো স্থানীয় সরকার কর্তৃপক্ষকে কার দুর্বাগিক মানচিত্রটির রথান উদ্দেশ্য হলো স্থানীয় সরকার কর্তৃপক্ষকে কার এই মানচিত্রটি একই সাথে
স্থানীয় জনগণ ও পারতশাসিত উন্নয়ন উদ্যোগসমূহে ভৌগোলিক, জীববৈচিত্রা ও জনসংখ্যা সম্পর্কিত স্থানীয় তথ্য দিয়ে
সহায়তা করেবে। মানচিত্রটি দুর্বাগিকে বৃঁকি বাস্থাপনা এবং এর সঙ্কেন্ত বিদ্যামন নীতি সংশোধন ও উন্নয়নদুগাক কর্মকাত
ব্যবহারন করেবি রভিটালসমূহকে সহায়ত করবে।

Supported by

Comprehensive Disaster Management Programme (CDMP II)
Disaster Management and Relief Bhaban (6th Floor)
92-93 Mohakhali C/A, Dhaka-1212
Phone 49 8921450, Eavy 499 8900954

Phone: +88 8821459, Fax: +88 9890854 E-mail: cdmp.org.bd, www.cdmp.org.bd

Prepared by: Centre for Climate Change and Environmental Research (C3ER)
BRAC University

66 Mohakhali, Dhaka 1212, Bangladesh Phone: +88 02 882 4051 ext: 4073 Fax: +88 02 881 0383 Email: c3er_info@bracu.ac.bd

